Recent Extreme Arctic Temperatures are due to a Split Polar Vortex

2016 ◽  
Vol 29 (15) ◽  
pp. 5609-5616 ◽  
Author(s):  
James E. Overland ◽  
Muyin Wang

Abstract There were extensive regions of Arctic temperature extremes in January and February 2016 that continued into April. For January, the Arctic-wide averaged temperature anomaly was 2.0°C above the previous record of 3.0°C based on four reanalysis products. Midlatitude atmospheric circulation played a major role in producing such extreme temperatures. Extensive low geopotential heights at 700 hPa extended over the southeastern United States, across the Atlantic, and well into the Arctic. Low geopotential heights along the Aleutian Islands and a ridge along northwestern North America contributed southerly wind flow. These two regions of low geopotential height were seen as a major split in the tropospheric polar vortex over the Arctic. Warm air advection north of central Eurasia reinforced the ridge that split the flow near the North Pole. Winter 2015 and 2016 geopotential height fields represented an eastward shift in the longwave atmospheric circulation pattern compared to earlier in the decade (2010–13). Certainly Arctic amplification will continue, and 2016 shows that there can be major Arctic contributions from midlatitudes. Whether Arctic amplification feedbacks are accelerated by the combination of recent thinner, more mobile Arctic sea ice and occasional extreme atmospheric circulation events from midlatitudes is an interesting conjecture.

2020 ◽  
Vol 11 (S1) ◽  
pp. 233-250 ◽  
Author(s):  
Farahnaz Fazel-Rastgar

Abstract The observed unusually high temperatures in the Arctic during recent decades can be related to the Arctic sea ice declines in summer 2007, 2012 and 2016. Arctic dipole formation has been associated with all three heatwaves of 2007, 2012 and 2016 in the Canadian Arctic. Here, the differences in weather patterns are investigated and compared with normal climatological mean (1981–2010) structures. This study examines the high-resolution datasets from the North American Regional Reanalysis model. During the study periods, the north of Alaska has been affected by the low-pressure tongue. The maximum difference between Greenland high-pressure centre and Alaska low-pressure tongue for the summers of 2012, 2016 and 2007 are 8 hPa, 7 hPa and 6 hPa, respectively, corresponding and matching to the maximum summer surface Canadian Arctic temperature records. During anomalous summer heatwaves, low-level wind, temperatures, total clouds (%) and downward radiation flux at the surface are dramatically changed. This study shows the surface albedo has been reduced over most parts of the Canadian Arctic Ocean during the mentioned heatwaves (∼5–40%), with a higher change (specifically in the eastern Canadian Arctic region) during summer 2012 in comparison with summer 2016 and summer 2007, agreeing with the maximum surface temperature and sea ice decline records.


2020 ◽  
Author(s):  
kunhui Ye ◽  
Gabriele Messori

<p>The wintertime warm Arctic-cold Eurasia (WACE) temperature trend during 1990-2010 was characterized by accelerating warming in the Arctic region, cooling in Eurasia and accelerating autumn/winter Arctic sea ice loss. We identify two atmospheric circulation modes over the North Atlantic-Northern Eurasian sector which displayed strong upward trends over the same period and can explain a large part of the observed decadal WACE pattern. Both modes bear a close resemblance to well-known teleconnection patterns and are relatively independent from anomalies in Arctic sea-ice cover. The first mode (PC1) captures the recent negative trends in the North Atlantic Oscillation and increased Greenland blocking frequency while the second mode (PC2) is reminiscent of a Rossby wave train and reflects an increased blocking frequency over the Urals and North Asia. We find that the loss in the Arctic sea ice and the upward trends in the PC1/PC2 together account for most of the decadal Arctic warming trend (>80%). However, the decadal Eurasian cooling trends may be primarily ascribed to the two circulation modes alone: all of the cooling in Siberia is contributed to by the PC1, and 65% of the cooling in East Asia by their combination (the contribution by PC2 doubles that by PC1). Enhanced intraseasonal activity of the two circulation modes increases blocking frequencies over Greenland, the Ural region and North Asia, which drive anomalous moisture/heat flux towards the Arctic and alter the downward longwave radiation. It weakens warm advection and enhances advection of Arctic cold airmass towards Eurasia.</p>


2020 ◽  
Vol 33 (13) ◽  
pp. 5565-5587 ◽  
Author(s):  
Kunhui Ye ◽  
Gabriele Messori

AbstractThe wintertime warm Arctic–cold Eurasia (WACE) temperature trend during 1990–2010 was characterized by accelerating warming in the Arctic region, cooling in Eurasia, and accelerating autumn/winter Arctic sea ice loss. We identify two atmospheric circulation modes over the North Atlantic–northern Eurasian sector that displayed strong upward trends over the same period and can explain a large part of the observed decadal WACE pattern. Both modes bear a close resemblance to well-known teleconnection patterns and are relatively independent from variability in Arctic sea ice cover. The first mode (PC1) captures the recent negative trends in the North Atlantic Oscillation and increased Greenland blocking frequency, while the second mode (PC2) is reminiscent of a Rossby wave train and reflects an increased blocking frequency over the Urals and north Asia. We find that the loss in the Arctic sea ice and the upward trends in PC1 and PC2 together account for most of the decadal Arctic warming trend (>80%). However, the decadal Eurasian cooling trends may be primarily ascribed to the two circulation modes alone: all of the cooling in Siberia is contributed to by PC1 and 65% of the cooling in East Asia by their combination (the contribution by PC2 doubles that by PC1). Enhanced intraseasonal activity of the two circulation modes increases blocking frequencies over Greenland, the Ural region, and north Asia, which drive anomalous moisture/heat flux toward the Arctic and alter the downward longwave radiation. This also weakens warm advection and enhances advection of cold Arctic airmasses towards Eurasia.


2018 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong

Abstract. In recent decades, the Arctic sea ice has been declining at a rapid pace as the Arctic is warmed at a rate of twice the global average. The underlying physical mechanisms for the Arctic warming and accelerated sea ice retreat are not fully understood. In this study, we apply a relatively novel statistical method called Self-Organizing Maps (SOM) to examine the trend and variability of autumn Arctic sea ice in the past four decades and their relationships to large-scale atmospheric circulation changes. Our results show a large portion of the autumn Arctic sea ice decline between 1979 and 2016 may be associated with anomalous autumn Arctic intrinsic atmospheric modes. The Arctic atmospheric circulation anomalies associated with anomalous sea surface temperature patterns over the North Pacific and North Atlantic influence Arctic sea ice primarily through anomalous temperature and water vapor advection and associated radiative feedback.


2018 ◽  
Vol 52 (1) ◽  
pp. 45 ◽  
Author(s):  
Michael Nikolaos Styllas ◽  
Dimitrios Kaskaoutis

The relationship between the winter (DJFM) precipitation and the atmospheric circulation patterns is examined around Mount Olympus, Greece in order to assess the effects of orography and atmospheric dynamics over a small (less than 100 x 100 km) spatial domain. Winter accumulated rainfall datasets from 8 stations spread along the eastern (marine) and western (continental) sides of the Mount Olympus at elevations between 30 m and 1150 m are used during the period 1981 to 2000. Synoptic scale conditions of mean sea-level pressure and geopotential heights at 850 hPa and 500 hPa, were used to explain the multiyear rainfall variability. High pressure systems dominated over the central Mediterranean and most parts of central Europe during the late 1980’s and early 1990’s, are associated with minimum winter rainfall along both sides of Mount Olympus. The winter of 1996 was associated with peak in rainfall along the marine side of the mountain and was characterized by enhancement of upper level trough over the western Mediterranean and increased low tropospheric depressions over the southern Adriatic and the Ionian Seas. This atmospheric circulation pattern facilitated a southeasterly air flow that affected more (less) the marine (continental) sides of the mountain. In contrast, dominance of low pressure systems with cores over the Gulf of Genoa and the Central Mediterranean affect the study area mostly from west/southwest revealing higher correlations with the precipitation in the continental side of the mountain (r= -0.80; Elassona station) and considerably lower correlations with the marine side (r = -0.67; Katerini station). This highlights the orographic barrier of the Mount Olympus revealing large differences between the upward and leeward sides. Large scale atmospheric patterns like the North Atlantic Oscillation and the Arctic Oscillation seem to influence the winter rainfall in the lowlands along the continental side of the mountain.


2014 ◽  
Vol 27 (8) ◽  
pp. 2789-2799 ◽  
Author(s):  
Diane J. Ivy ◽  
Susan Solomon ◽  
David W. J. Thompson

Abstract Dynamical coupling between the stratospheric and tropospheric circumpolar circulations in the Arctic has been widely documented on month-to-month and interannual time scales, but not on longer time scales. In the Antarctic, both short- and long-term coupling extending from the stratosphere to the surface has been identified. In this study, changes in Arctic temperature, geopotential height, and ozone observed since the satellite era began in 1979 are examined, comparing dynamically quiescent years in which major sudden stratospheric warmings did not occur to all years. It is shown that this approach clarifies the behavior for years without major warmings and that dynamically quiescent years are marked by a strengthening of the Arctic polar vortex over the past 30 years. The associated declines in stratospheric temperatures, geopotential height, and ozone are qualitatively similar to those obtained in the Antarctic (albeit weaker), and propagate downward into the Arctic lowermost stratosphere during late winter and early spring. In sharp contrast to the Antarctic, the strengthening of the Arctic stratospheric vortex appears to originate at a higher altitude, and the propagation to the Arctic troposphere is both very limited and confined to the uppermost troposphere, even when only dynamically quiescent years are considered in the analysis.


2019 ◽  
Vol 76 (1) ◽  
pp. 333-356 ◽  
Author(s):  
A. Hannachi ◽  
W. Iqbal

Abstract Nonlinearity in the Northern Hemisphere’s wintertime atmospheric flow is investigated from both an intermediate-complexity model of the extratropics and reanalyses. A long simulation is obtained using a three-level quasigeostrophic model on the sphere. Kernel empirical orthogonal functions (EOFs), which help delineate complex structures, are used along with the local flow tendencies. Two fixed points are obtained, which are associated with strong bimodality in two-dimensional kernel principal component (PC) space, consistent with conceptual low-order dynamics. The regimes reflect zonal and blocked flows. The analysis is then extended to ERA-40 and JRA-55 using daily sea level pressure (SLP) and geopotential heights in the stratosphere (20 hPa) and troposphere (500 hPa). In the stratosphere, trimodality is obtained, representing disturbed, displaced, and undisturbed states of the winter polar vortex. In the troposphere, the probability density functions (PDFs), for both fields, within the two-dimensional (2D) kernel EOF space are strongly bimodal. The modes correspond broadly to opposite phases of the Arctic Oscillation with a signature of the negative North Atlantic Oscillation (NAO). Over the North Atlantic–European sector, a trimodal PDF is also obtained with two strong and one weak modes. The strong modes are associated, respectively, with the north (or +NAO) and south (or −NAO) positions of the eddy-driven jet stream. The third weak mode is interpreted as a transition path between the two positions. A climate change signal is also observed in the troposphere of the winter hemisphere, resulting in an increase (a decrease) in the frequency of the polar high (low), consistent with an increase of zonal flow frequency.


2014 ◽  
Vol 7 (11) ◽  
pp. 3917-3926 ◽  
Author(s):  
J. M. Intrieri ◽  
G. de Boer ◽  
M. D. Shupe ◽  
J. R. Spackman ◽  
J. Wang ◽  
...  

Abstract. In February and March of 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. The WISPAR science missions were designed to (1) mprove our understanding of Pacific weather systems and the polar atmosphere; (2) evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3) demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB) in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.


2020 ◽  
Vol 20 (22) ◽  
pp. 13753-13770
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Cuijuan Sui ◽  
Bo Sun

Abstract. The recent increasing trend of “warm Arctic, cold continents” has attracted much attention, but it remains debatable as to what forces are behind this phenomenon. Here, we revisited surface temperature variability over the Arctic and the Eurasian continent by applying the self-organizing-map (SOM) technique to gridded daily surface temperature data. Nearly 40 % of the surface temperature trends are explained by the nine SOM patterns that depict the switch to the current warm Arctic–cold Eurasia pattern at the beginning of this century from the reversed pattern that dominated the 1980s and 1990s. Further, no cause–effect relationship is found between the Arctic sea ice loss and the cold spells in the high-latitude to midlatitude Eurasian continent suggested by earlier studies. Instead, the increasing trend in warm Arctic–cold Eurasia pattern appears to be related to the anomalous atmospheric circulations associated with two Rossby wave trains triggered by rising sea surface temperature (SST) over the central North Pacific and the North Atlantic oceans. On interdecadal timescale, the recent increase in the occurrences of the warm Arctic–cold Eurasia pattern is a fragment of the interdecadal variability of SST over the Atlantic Ocean as represented by the Atlantic Multidecadal Oscillation (AMO) and over the central Pacific Ocean.


Sign in / Sign up

Export Citation Format

Share Document