scholarly journals Contribution of Atlantic and Pacific Multidecadal Variability to Twentieth-Century Temperature Changes

2017 ◽  
Vol 30 (16) ◽  
pp. 6279-6295 ◽  
Author(s):  
Martin B. Stolpe ◽  
Iselin Medhaug ◽  
Reto Knutti

Recent studies have suggested that significant parts of the observed warming in the early and the late twentieth century were caused by multidecadal internal variability centered in the Atlantic and Pacific Oceans. Here, a novel approach is used that searches for segments of unforced preindustrial control simulations from global climate models that best match the observed Atlantic and Pacific multidecadal variability (AMV and PMV, respectively). In this way, estimates of the influence of AMV and PMV on global temperature that are consistent both spatially and across variables are made. Combined Atlantic and Pacific internal variability impacts the global surface temperatures by up to 0.15°C from peak-to-peak on multidecadal time scales. Internal variability contributed to the warming between the 1920s and 1940s, the subsequent cooling period, and the warming since then. However, variations in the rate of warming still remain after removing the influence of internal variability associated with AMV and PMV on the global temperatures. During most of the twentieth century, AMV dominates over PMV for the multidecadal internal variability imprint on global and Northern Hemisphere temperatures. Less than 10% of the observed global warming during the second half of the twentieth century is caused by internal variability in these two ocean basins, reinforcing the attribution of most of the observed warming to anthropogenic forcings.

1998 ◽  
Vol 27 ◽  
pp. 565-570 ◽  
Author(s):  
William M. Connolley ◽  
Siobhan P. O'Farrell

We compare observed temperature variations in Antarctica with climate-model runs over the last century. The models used are three coupled global climate models (GCMs) — the UKMO, the CSIRO and the MPI forced by the CO2 increases observed over the last century, and an atmospheric model experiment forced with observed sea-surface temperatures and sea-ice extents over the last century. Despite some regions of agreement, in general the GCM runs appear to be incompatible with each other and with the observations, although the short observational record and high natural variability make verification difficult. One of the best places for a more detailed study is the Antarctic Peninsula where the density of stations is higher and station records are longer than elsewhere in Antarctica. Observations show that this area has seen larger temperature rises than anywhere else in Antarctica. None of the three GCMs simulate such large temperature changes in the Peninsula region, in either climate-change runs radiatively forced by CO2 increases or control runs which assess the level of model variability.


2021 ◽  
Vol 289 ◽  
pp. 01009
Author(s):  
Valeriya Petruhina

The problem of predicting climate change and its impact on humans is quite important and relevant in recent times. For a long time, mechanisms and methods for predicting the behavior of the climate in various regions and regions of our planet have been developed. Due to climate change, aggressive human impact on nature, and other various factors, the methods developed in the mid-twentieth century are becoming ineffective, and it is time-consuming but feasible to calculate using several methods. The article considers the technology of processing geoclimatic data, which is used to form spatially distributed predictive estimates of the state of the atmosphere.


2021 ◽  
Author(s):  
Mark Risser ◽  
William Collins ◽  
Michael Wehner ◽  
Travis O'Brien ◽  
Christopher Paciorek ◽  
...  

Abstract Despite the emerging influence of anthropogenic climate change on the global water cycle, at regional scales the combination of observational uncertainty, large internal variability, and modeling uncertainty undermine robust statements regarding the human influence on precipitation. Here, we propose a novel approach to regional detection and attribution (D&A) for precipitation, starting with the contiguous United States (CONUS) where observational uncertainty is minimized. In a single framework, we simultaneously detect systematic trends in mean and extreme precipitation, attribute trends to anthropogenic forcings, compute the effects of forcings as a function of time, and map the effects of individual forcings. We use output from global climate models in a perfect-data sense to conduct a set of tests that yield a parsimonious representation for characterizing seasonal precipitation over the CONUS for the historical record (1900 to present day). In doing so, we turn an apparent limitation into an opportunity by using the diversity of responses to short-lived climate forcers across the CMIP6 multi-model ensemble to ensure our D&A is insensitive to structural uncertainty. Our framework is developed using a Pearl-causal perspective, but forthcoming research now underway will apply the framework to in situ measurements using a Granger-causal perspective. While the hypothesis-based framework and accompanying generalized D&A formula we develop should be widely applicable, we include a strong caution that the hypothesis-guided simplification of the formula for the historical climatic record of CONUS as described in this paper will likely fail to hold in other geographic regions and under future warming.


2021 ◽  
Author(s):  
Boriana Chtirkova ◽  
Doris Folini ◽  
Lucas Ferreira Correa ◽  
Martin Wild

<p>Quantifying trends in surface solar radiation (SSR) of unforced simulations is of substantial importance when one tries to quantify the anthropogenic effect in forced trends, as the net effect may be dampened or amplified by the internal variability of the system. In our analysis, we consider trends on different temporal scales (10, 30, 50 and 100 years) from 58 global climate models, participating in the Coupled Model Intercomparison Project - Phase 6 (CMIP6). We calculate the trends at the grid-box level for all-sky and clear-sky SSR using annual mean data of the multi-century pre-industrial control (piControl) experiments. The trends from both variables are found to depend strongly on the geographical region, as the most pronounced trends of the all-sky variable are observed in the Tropical Pacific, while the largest clear-sky trends are found in the large desert regions. Inspecting for each grid cell the statistical distribution of occurring N-year trends  shows that they are normally distributed in the majority of grid cells for both all-sky and clear-sky SSR. The 75-th percentile taken from these distributions (i.e. a positive trend with a 25 % chance of occurrence) varies with geographical region, taking values in the ranges 0.79 - 12.03 Wm<sup>-2</sup>/decade for 10-year trends, 0.15 - 2.05 Wm<sup>-2</sup>/decade for 30-year trends, 0.07 - 0.92 Wm<sup>-2</sup>/decade for 50-year trends and 0.02 - 0.29 Wm<sup>-2</sup>/decade for 100-year trends for all-sky SSR. The unforced trends become less significant on longer timescales – the trend medians, corresponding to the above ranges, are 3.18 Wm<sup>-2</sup>/decade, 0.62 Wm<sup>-2</sup>/decade, 0.29 Wm<sup>-2</sup>/decade, 0.10 Wm<sup>-2</sup>/decade respectively. The trends for clear-sky SSR are found to differ from the all-sky SSR by a factor of 0.16 on average, independent of the trend length. The model spread becomes greater at longer trend timescales, the differences being more substantial between large model families rather than between individual models. To elucidate the dominant causes of variability in different regions, we examine the correlations of the SSR variables with ambient aerosol optical thickness at 550 nm, atmosphere mass content of water vapour, cloud area fraction and albedo.</p>


2013 ◽  
Vol 26 (18) ◽  
pp. 6904-6914 ◽  
Author(s):  
David E. Rupp ◽  
Philip W. Mote ◽  
Nathaniel L. Bindoff ◽  
Peter A. Stott ◽  
David A. Robinson

Abstract Significant declines in spring Northern Hemisphere (NH) snow cover extent (SCE) have been observed over the last five decades. As one step toward understanding the causes of this decline, an optimal fingerprinting technique is used to look for consistency in the temporal pattern of spring NH SCE between observations and simulations from 15 global climate models (GCMs) that form part of phase 5 of the Coupled Model Intercomparison Project. The authors examined simulations from 15 GCMs that included both natural and anthropogenic forcing and simulations from 7 GCMs that included only natural forcing. The decline in observed NH SCE could be largely explained by the combined natural and anthropogenic forcing but not by natural forcing alone. However, the 15 GCMs, taken as a whole, underpredicted the combined forcing response by a factor of 2. How much of this underprediction was due to underrepresentation of the sensitivity to external forcing of the GCMs or to their underrepresentation of internal variability has yet to be determined.


2021 ◽  
Author(s):  
Gavin D. Madakumbura ◽  
Chad W. Thackeray ◽  
Jesse Norris ◽  
Naomi Goldenson ◽  
Alex Hall

Abstract Global climate models produce large increases in extreme precipitation when subject to anthropogenic forcing, but detecting this human influence in observations is challenging. Large internal variability makes the signal difficult to characterize. Models produce diverse precipitation responses to anthropogenic forcing, mirroring a variety of parameterization choices for subgrid-scale processes. And observations are inhomogeneously sampled in space and time, leading to multiple global datasets, each produced with a different homogenization technique. Thus, previous attempts to detect human influence on extreme precipitation have not incorporated internal variability or model uncertainty, and have been limited to specific regions and observational datasets. Using machine learning methods, we find a physically interpretable anthropogenic signal that is detectable in all global datasets. Detection occurs even when internal variability and model uncertainty are taken into account. Machine learning efficiently generates multiple lines of evidence supporting detection of an anthropogenic signal in extreme precipitation.


2012 ◽  
Vol 25 (7) ◽  
pp. 2456-2470 ◽  
Author(s):  
Koichi Sakaguchi ◽  
Xubin Zeng ◽  
Michael A. Brunke

Abstract Motivated by increasing interests in regional- and decadal-scale climate predictions, this study systematically analyzed the spatial- and temporal-scale dependence of the prediction skill of global climate models in surface air temperature (SAT) change in the twentieth century. The linear trends of annual mean SAT over moving time windows (running linear trends) from two observational datasets and simulations by three global climate models [Community Climate System Model, version 3.0 (CCSM3.0), Climate Model, version 2.0 (CM2.0), and Model E-H] that participated in CMIP3 are compared over several temporal (10-, 20-, 30-, 40-, and 50-yr trends) and spatial (5° × 5°, 10° × 10°, 15° × 15°, 20° × 20°, 30° × 30°, 30° latitudinal bands, hemispheric, and global) scales. The distribution of root-mean-square error is improved with increasing spatial and temporal scales, approaching the observational uncertainty range at the largest scales. Linear correlation shows a similar tendency, but the limited observational length does not provide statistical significance over the longer temporal scales. The comparison of RMSE to climatology and a Monte Carlo test using preindustrial control simulations suggest that the multimodel ensemble mean is able to reproduce robust climate signals at 30° zonal mean or larger spatial scales, while correlation requires hemispherical or global mean for the twentieth-century simulations. Persistent lower performance is observed over the northern high latitudes and the North Atlantic southeast of Greenland. Although several caveats exist for the metrics used in this study, the analyses across scales and/or over running time windows can be taken as one of the approaches for climate system model evaluations.


2021 ◽  
Vol 34 (3) ◽  
pp. 931-948
Author(s):  
Anne Sledd ◽  
Tristan L’Ecuyer

AbstractThe Arctic is rapidly changing, with increasingly dramatic sea ice loss and surface warming in recent decades. Shortwave radiation plays a key role in Arctic warming during summer months, and absorbed shortwave radiation has been increasing largely because of greater sea ice loss. Clouds can influence this ice–albedo feedback by modulating the amount of shortwave radiation incident on the Arctic Ocean. In turn, clouds impact the amount of time that must elapse before forced trends in Arctic shortwave absorption emerge from internal variability. This study determines whether the forced climate response of absorbed shortwave radiation in the Arctic has emerged in the modern satellite record and global climate models. From 18 years of satellite observations from CERES-EBAF, we find that recent declines in sea ice are large enough to produce a statistically significant trend (1.7 × 106 PJ or 3.9% per decade) in observed clear-sky absorbed shortwave radiation. However, clouds preclude any forced trends in all-sky absorption from emerging within the existing satellite record. Across 18 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), the predicted time to emergence of absorbed shortwave radiation trends varies from 8 to 39 and from 8 to 35 years for all-sky and clear-sky conditions, respectively, across two future scenarios. Furthermore, most models fail to reproduce the observed cloud delaying effect because of differences in internal variability. Contrary to observations, one-third of models suggest that clouds may reduce the time to emergence of absorbed shortwave trends relative to clear skies, an artifact that may be the result of inaccurate representations of cloud feedbacks.


2018 ◽  
Vol 31 (14) ◽  
pp. 5581-5593 ◽  
Author(s):  
Jonghun Kam ◽  
Thomas R. Knutson ◽  
P. C. D. Milly

Over regions where snowmelt runoff substantially contributes to winter–spring streamflows, warming can accelerate snowmelt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by the brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, the detection/attribution of changes in midlatitude North American winter–spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. Robustness across models, start/end dates for trends, and assumptions about internal variability are evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central United States, where winter–spring streamflows have been starting earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western United States/southwestern Canada and in the extreme northeastern United States/Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.


Sign in / Sign up

Export Citation Format

Share Document