scholarly journals The Imprint of Strong-Storm Tracks on Winter Weather in North America

2018 ◽  
Vol 31 (5) ◽  
pp. 2057-2074 ◽  
Author(s):  
Katherine E. Lukens ◽  
Ernesto Hugo Berbery ◽  
Kevin I. Hodges

Northern Hemisphere winter storm tracks and their relation to winter weather are investigated using NCEP CFSR data. Storm tracks are described by isentropic PV maxima within a Lagrangian framework; these correspond well with those described in previous studies. The current diagnostics focus on strong-storm tracks, which comprise storms that achieve a maximum PV exceeding the mean value by one standard deviation. Large increases in diabatic heating related to deep convection occur where the storm tracks are most intense. The cyclogenesis pattern shows that strong storms generally develop on the upstream sectors of the tracks. Intensification happens toward the eastern North Pacific and all across the North Atlantic Ocean, where enhanced storm-track-related weather is found. In this study, the relation of storm tracks to near-surface winds and precipitation is evaluated. The largest increases in storm-track-related winds are found where strong storms tend to develop and intensify, while storm precipitation is enhanced in areas where the storm tracks have their highest intensity. Strong storms represent about 16% of all storms but contribute 30%–50% of the storm precipitation in the storm-track regions. Both strong-storm-related winds and precipitation are prone to cause storm-related losses in the eastern U.S. and North American coasts. Over the oceans, maritime operations are expected to be most vulnerable to damage offshore of the U.S. coasts. Despite making up a small fraction of all storms, the strong-storm tracks have a significant imprint on winter weather in North America potentially leading to structural and economic loss.

2017 ◽  
Vol 30 (13) ◽  
pp. 4965-4981 ◽  
Author(s):  
James F. Booth ◽  
Young-Oh Kwon ◽  
Stanley Ko ◽  
R. Justin Small ◽  
Rym Msadek

To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.


2019 ◽  
Vol 34 (3) ◽  
pp. 751-772 ◽  
Author(s):  
Katherine E. Lukens ◽  
Ernesto Hugo Berbery

Abstract This article examines to what extent the NCEP Climate Forecast System (CFS) weeks 3–4 reforecasts reproduce the CFS Reanalysis (CFSR) storm-track properties, and if so, whether the storm-track behavior can contribute to the prediction of related winter weather in North America. The storm tracks are described by objectively tracking isentropic potential vorticity (PV) anomalies for two periods (base, 1983–2002; validation, 2003–10) to assess their value in a more realistic forecast mode. Statistically significant positive PV biases are found in the storm-track reforecasts. Removal of systematic errors is found to improve general storm-track features. CFSR and Reforecast (CFSRR) reproduces well the observed intensity and spatial distributions of storm-track-related near-surface winds, with small yet significant biases found in the storm-track regions. Removal of the mean wind bias further reduces the error on average by 12%. The spatial distributions of the reforecast precipitation correspond well with the reanalysis, although significant positive biases are found across the contiguous United States. Removal of the precipitation bias reduces the error on average by 25%. The bias-corrected fields better depict the observed variability and exhibit additional improvements in the representation of winter weather associated with strong-storm tracks (the storms with more intense PV). Additionally, the reforecasts reproduce the characteristic intensity and frequency of hazardous strong-storm winds. The findings suggest a potential use of storm-track statistics in the advancement of subseasonal-to-seasonal weather prediction in North America.


2017 ◽  
Vol 30 (10) ◽  
pp. 3705-3724 ◽  
Author(s):  
Jiabao Wang ◽  
Hye-Mi Kim ◽  
Edmund K. M. Chang

Abstract An interdecadal weakening in the North Atlantic storm track (NAST) and a poleward shift of the North Pacific storm track (NPST) are found during October–March for the period 1979–2015. A significant warming of surface air temperature (Ts) over northeastern North America and a La Niña–like change in the North Pacific under the background of Arctic amplification are found to be the contributors to the observed changes in the NAST and the NPST, respectively, via modulation of local baroclinicity. The interdecadal change in baroclinic energy conversion is consistent with changes in storm tracks with an energy loss from eddies to mean flow over the North Atlantic and an energy gain over the North Pacific. The analysis of simulations from the Community Earth System Model Large Ensemble project, although with some biases in storm-track and Ts simulations, supports the observed relationship between the NAST and Ts over northeastern North America, as well as the link between the NPST and El Niño–Southern Oscillation. The near-future projections of Ts and storm tracks are characterized by a warmer planet under the influence of increasing greenhouse gases and a significant weakening of both the NAST and the NPST. The potential role of the NAST in redistributing changes in Ts over the surrounding regions is also examined. The anomalous equatorward moisture flux associated with the weakening trend of the NAST would enhance the warming over its upstream region and hinder the warming over its downstream region via modulation of the downward infrared radiation.


Oceans ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 429-447
Author(s):  
Christian Dominguez ◽  
James M. Done ◽  
Cindy L. Bruyère

Tropical Cyclones (TCs) and Easterly Waves (EWs) are the most important phenomena in Tropical North America. Thus, examining their future changes is crucial for adaptation and mitigation strategies. The Community Earth System Model drove a three-member regional model multi-physics ensemble under the Representative Concentration Pathways 8.5 emission scenario for creating four future scenarios (2020–2030, 2030–2040, 2050–2060, 2080–2090). These future climate runs were analyzed to determine changes in EW and TC features: rainfall, track density, contribution to seasonal rainfall, and tropical cyclogenesis. Our study reveals that a mean increase of at least 40% in the mean annual TC precipitation is projected over northern Mexico and southwestern USA. Slight positive changes in EW track density are projected southwards 10° N over the North Atlantic Ocean for the 2050–2060 and 2080–2090 periods. Over the Eastern Pacific Ocean, a mean increment in the EW activity is projected westwards across the future decades. Furthermore, a mean reduction by up to 60% of EW rainfall, mainly over the Caribbean region, Gulf of Mexico, and central-southern Mexico, is projected for the future decades. Tropical cyclogenesis over both basins slightly changes in future scenarios (not significant). We concluded that these variations could have significant impacts on regional precipitation.


2018 ◽  
Author(s):  
Manon Tonnard ◽  
Hélène Planquette ◽  
Andrew R. Bowie ◽  
Pier van der Merwe ◽  
Morgane Gallinari ◽  
...  

Abstract. Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analysed using a SeaFAST-picoTM coupled to an Element XR HR-ICP-MS and provided interesting insights on the Fe sources in this area. Overall, DFe concentrations ranged from 0.09 ± 0.01 nmol L−1 to 7.8 ± 0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland and Newfoundland Margins likely due to riverine inputs from the Tagus River, meteoric water inputs and sedimentary inputs. Air-sea interactions were suspected to be responsible for the increase in DFe concentrations within subsurface waters of the Irminger Sea due to deep convection occurring the previous winter, that provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles from the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers were found to act as either a source or a sink of DFe depending on the nature of particles.


<em>Abstract.</em> - Sea sturgeons are closely related anadromous fishes inhabiting both shores of the North Atlantic Ocean. They are classified in two species: the European sturgeon <em>Acipenser sturio</em> in Europe and the Atlantic sturgeon <em>A. oxyrinchus</em> in North America. The Atlantic sturgeon is further separated into two subspecies: Atlantic sturgeon (North American East Coast populations) <em>A. o. oxyrinchus</em> and Gulf sturgeon <em>A. o. desotoi. </em>Most recent studies of morphology and genetics support these classifications. Furthermore, they produced evidence for a trans-Atlantic colonization event during the early Middle Ages. Atlantic sturgeon colonized Baltic waters, founding a self-reproducing population before they became extinct due to anthropogenic reasons. Today, populations of Atlantic sturgeon are found along the Atlantic Coast from the St. Johns River, Florida to the St. Lawrence River, Quebec, whereas only one relict spawning population of European sturgeon still exists in the Gironde River, France. The evidence of a population of Atlantic sturgeon in Baltic waters requires a detailed comparison of both sea sturgeon species, describing differences and similarities, which may influence the ongoing restoration projects in Europe as well as concerning conservation efforts in North America. This article reviews similarities and differences in the fields of genetics, morphology, and ecological adaptation of European sturgeon and Atlantic sturgeon, concluding that, besides morphological and genetic differences, a wider range of spawning temperatures in Atlantic sturgeon is evident. This wider temperature adaptation may be a selective advantage under fast-changing climatic conditions, possibly the mechanism that enabled the species shift in the Baltic Sea during the Middle Ages.


2007 ◽  
Vol 3 (2) ◽  
pp. 181-192 ◽  
Author(s):  
F. Kaspar ◽  
T. Spangehl ◽  
U. Cubasch

Abstract. Climate simulations of the Eemian interglacial and the last glacial inception have been performed by forcing a coupled ocean-atmosphere general circulation model with insolation patterns of these periods. The parameters of the Earth's orbit have been set to conditions of 125 000 and 115 000 years before present (yr BP). Compared to today, these dates represent periods with enhanced and weakened seasonality of insolation in the northern hemisphere. Here we analyse the simulated change in northern hemisphere winter storm tracks. The change in the orbital configuration has a strong impact on the meridional temperature gradients and therefore on strength and location of the storm tracks. The North Atlantic storm track is strengthened, shifted northward and extends further to the east in the simulation for the Eemian at 125 kyr BP. As one consequence, the northern parts of Europe experience an increase in winter precipitation. The frequency of winter storm days increases over large parts of the North Atlantic including the British Isles and the coastal zones of north-western Europe. Opposite but weaker changes in storm track activity are simulated for 115 kyr BP.


2010 ◽  
Vol 67 (5) ◽  
pp. 1420-1437 ◽  
Author(s):  
Justin J. Wettstein ◽  
John M. Wallace

Abstract Month-to-month storm-track variability is investigated via EOF analyses performed on ERA-40 monthly-averaged high-pass filtered daily 850-hPa meridional heat flux and the variances of 300-hPa meridional wind and 500-hPa height. The analysis is performed both in hemispheric and sectoral domains of the Northern and Southern Hemispheres. Patterns characterized as “pulsing” and “latitudinal shifting” of the climatological-mean storm tracks emerge as the leading sectoral patterns of variability. Based on the analysis presented, storm-track variability on the spatial scale of the two Northern Hemisphere sectors appears to be largely, but perhaps not completely, independent. Pulsing and latitudinally shifting storm tracks are accompanied by zonal wind anomalies consistent with eddy-forced accelerations and geopotential height anomalies that project strongly on the dominant patterns of geopotential height variability. The North Atlantic Oscillation (NAO)–Northern Hemisphere annular mode (NAM) is associated with a pulsing of the Atlantic storm track and a meridional displacement of the upper-tropospheric jet exit region, whereas the eastern Atlantic (EA) pattern is associated with a latitudinally shifting storm track and an extension or retraction of the upper-tropospheric jet. Analogous patterns of storm-track and upper-tropospheric jet variability are associated with the western Pacific (WP) and Pacific–North America (PNA) patterns. Wave–mean flow relationships shown here are more clearly defined than in previous studies and are shown to extend through the depth of the troposphere. The Southern Hemisphere annular mode (SAM) is associated with a latitudinally shifting storm track over the South Atlantic and Indian Oceans and a pulsing South Pacific storm track. The patterns of storm-track variability are shown to be related to simple distortions of the climatological-mean upper-tropospheric jet.


1999 ◽  
Vol 104 (D21) ◽  
pp. 26219-26233 ◽  
Author(s):  
A. I. Prados ◽  
R. R. Dickerson ◽  
B. G. Doddridge ◽  
P. A. Milne ◽  
J. L. Moody ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document