scholarly journals How Wet and Dry Spells Evolve across the Conterminous United States Based on 555 Years of Paleoclimate Data

2018 ◽  
Vol 31 (16) ◽  
pp. 6633-6647 ◽  
Author(s):  
Michelle Ho ◽  
Upmanu Lall ◽  
Edward R. Cook

Abstract Evolving patterns of droughts and wet spells in the conterminous United States (CONUS) are examined over 555 years using a tree-ring-based paleoclimate reconstruction of the modified Palmer drought severity index (PDSI). A hidden Markov model is used as an unsupervised method of classifying climate states and quantifying the temporal evolution from one state to another. Modeling temporal variability in spatial patterns of drought and wet spells provides the ability to objectively assess and simulate historical persistence and recurrence of similar patterns. The Viterbi algorithm reveals the probable sequence of states through time, enabling an examination of temporal and spatial features and associated large-scale climate forcing. Distinct patterns of sea surface temperature that are known to enhance or inhibit rainfall are associated with some states. Using the current CONUS PDSI field the model can be used to simulate the space–time PDSI pattern over the next few years, or unconditional simulations can be used to derive estimates of spatially concurrent PDSI patterns and their persistence and intensity across the CONUS.

2006 ◽  
Vol 19 (8) ◽  
pp. 1407-1421 ◽  
Author(s):  
Eric J. Alfaro ◽  
Alexander Gershunov ◽  
Daniel Cayan

Abstract A statistical model based on canonical correlation analysis (CCA) was used to explore climatic associations and predictability of June–August (JJA) maximum and minimum surface air temperatures (Tmax and Tmin) as well as the frequency of Tmax daily extremes (Tmax90) in the central and western United States (west of 90°W). Explanatory variables are monthly and seasonal Pacific Ocean SST (PSST) and the Climate Division Palmer Drought Severity Index (PDSI) during 1950–2001. Although there is a positive correlation between Tmax and Tmin, the two variables exhibit somewhat different patterns and dynamics. Both exhibit their lowest levels of variability in summer, but that of Tmax is greater than Tmin. The predictability of Tmax is mainly associated with local effects related to previous soil moisture conditions at short range (one month to one season), with PSST providing a secondary influence. Predictability of Tmin is more strongly influenced by large-scale (PSST) patterns, with PDSI acting as a short-range predictive influence. For both predictand variables (Tmax and Tmin), the PDSI influence falls off markedly at time leads beyond a few months, but a PSST influence remains for at least two seasons. The maximum predictive skill for JJA Tmin, Tmax, and Tmax90 is from May PSST and PDSI. Importantly, skills evaluated for various seasons and time leads undergo a seasonal cycle that has maximum levels in summer. At the seasonal time frame, summer Tmax prediction skills are greatest in the Midwest, northern and central California, Arizona, and Utah. Similar results were found for Tmax90. In contrast, Tmin skill is spread over most of the western region, except for clusters of low skill in the northern Midwest and southern Montana, Idaho, and northern Arizona.


2000 ◽  
Vol 78 (7) ◽  
pp. 851-861 ◽  
Author(s):  
Marc D Abrams ◽  
Saskia van de Gevel ◽  
Ryan C Dodson ◽  
Carolyn A Copenheaver

Dendrochronological techniques were used to investigate the dynamics of an old-growth forest on the extreme slope (65%) at Ice Glen Natural Area in southwestern Massachusetts. The site represented a rare opportunity to study the disturbance history, successional development, and responses to climatic variation of an old-growth hemlock (Tsuga canadensis (L.) Carr) - white pine (Pinus strobus L.) - northern hardwood forest in the northeastern United States. Hemlock is the oldest species in the forest, with maximum tree ages of 305-321 years. The maximum ages for white pine and several hardwood species are 170-200 years. There was continuous recruitment of hemlock trees from 1677 to 1948. All of the existing white pine was recruited in the period between 1800 and 1880, forming an unevenly aged population within an unevenly aged, old-growth hemlock canopy. This was associated with large increases in the Master tree-ring chronologies, indicative of major stand-wide disturbances, for both hemlock and white pine. Nearly all of the hardwood species were also recruited between 1800 and 1880. After 1900, there was a dramatic decline in recruitment for all species, including hemlock, probably as a result of intensive deer browsing. White pine and hemlock tree-ring growth during the 20th century was positively correlated with the annual Palmer drought severity index (r = 0.61 and 0.39, respectively). This included reduced growth during periods of low Palmer drought severity index values, the drought years of 1895-1922, and dramatic increases during periods of high Palmer drought severity index values in the 1970s and 1990s. Significant positive and negative correlations of certain monthly Palmer drought severity index values with 20th century tree-ring chronologies also exist for white pine and hemlock using response function analysis. The results of this study suggest that old-growth forests on extreme sites in the eastern United States may be particularly sensitive to direct and indirect allogenic factors and climatic variations and represent an important resource for studying long-term ecological and climatic history.Key words: age structure, radial growth analysis, disturbance, climate, fire, tree rings.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Coniferous forests cover the mountains in many parts of Central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here, we present a regional tree-ring chronology from the moisture-sensitive Zeravshan juniper (Juniperus seravschanica Kom.) from the Kuramin Range (Tajikistan) in western Central Asia, which is used to reveal past summer drought variability from 1650 to 2015 Common Era (CE). The chronology accounts for 40.5% of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods, including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875, and 1931–1987, and five wet periods, including 1742–1752, 1843–1859, 1876–1913, 1921–1930, and 1988–2015, were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and capture the regional dry/wet periods of Central Asia. Moreover, the spectral analysis indicates the existence of centennial (128 years), decadal (24.3 and 11.4 years), and interannual (8.0, 3.6, 2.9, and 2.0 years) cycles, which may be linked with climate forces, such as solar activity and El Niño-Southern Oscillation (ENSO). The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the large-scale ocean–atmosphere–land circulation systems.


2014 ◽  
Vol 15 (5) ◽  
pp. 2039-2049 ◽  
Author(s):  
Mark R. Jury

Abstract Hydrological fluctuations of Malawi’s Shire River and climatic drivers are studied for a range of time and space scales. The annual cycles of basin rainfall and river flow peak in summer and autumn, respectively. Satellite and model products at <50-km resolution resolve the water deficit in this narrow valley. The leading climate index fitting Shire River flow anomalies is the Climatic Research Unit (CRU) Palmer drought severity index, based on interpolated gauge rainfall minus Penman–Monteith potential evapotranspiration. Climate variables anticipate lake level changes by 2 months, while weather variables anticipate river flow surges by 2 days. Global climate patterns related to wet years include a Pacific La Niña cool phase and low pressure over northeastern Africa. Shire River floods coincide with a cyclonic looping wind pattern that amplifies the equatorial trough and draws monsoon flow from Tanzania. Hot spells are common in spring: daytime surface temperatures can reach 60°C causing rapid desiccation. An anticyclonic high pressure cell promotes evaporation losses of ~20 mm day−1 over brief periods. Flood and drought in Malawi are shown to be induced by the large-scale atmospheric circulation and rainfall in the surrounding highlands. Hence, early warning systems should consider satellite and radar coverage of the entire basin.


2002 ◽  
Vol 11 (4) ◽  
pp. 257 ◽  
Author(s):  
Anthony L. Westerling ◽  
Alexander Gershunov ◽  
Daniel R. Cayan ◽  
Tim P. Barnett

A statistical forecast methodology exploits large-scale patterns in monthly U.S. Climatological Division Palmer Drought Severity Index (PDSI) values over a wide region and several seasons to predict area burned in western U.S. wildfires by ecosystem province a season in advance. The forecast model, which is based on canonical correlations, indicates that a few characteristic patterns determine predicted wildfire season area burned. Strong negative associations between anomalous soil moisture (inferred from PDSI) immediately prior to the fire season and area burned dominate in most higher elevation forested provinces, while strong positive associations between anomalous soil moisture a year prior to the fire season and area burned dominate in desert and shrub and grassland provinces. In much of the western U.S., above- and below-normal fire season forecasts were successful 57% of the time or better, as compared with a 33% skill for a random guess, and with a low probability of being surprised by a fire season at the opposite extreme of that forecast.


2015 ◽  
Vol 19 (7) ◽  
pp. 1-16 ◽  
Author(s):  
Tianyi Zhang ◽  
Xiaomao Lin ◽  
Danny H. Rogers ◽  
Freddie R. Lamm

Abstract More severe droughts in the United States will bring great challenges to irrigation water supply. Here, the authors assessed the potential adaptive effects of irrigation infrastructure under present and more extensive droughts. Based on data over 1985–2005, this study established a statistical model that suggests around 4.4% more irrigation was applied in response to a one-unit reduction in the Palmer drought severity index (PDSI), and approximately 5.0% of irrigation water application could be saved for each 10% decrease in the areas supplied by surface irrigation infrastructure. Based on the results, the model-projected irrigation infrastructure has played a greater role in changes in irrigation than drought in most areas under the current climate except some southwestern counties. However, under the predicted future more severe drought in 2080–99 under the representative concentration pathways 4.5 scenario, the model projected that the drought will require 0%–20% greater irrigation amounts assuming the current irrigation efficiency. Under the predicted drought scenario, irrigation depth can be maintained at or below the baseline level in the western United States only when better irrigation infrastructure replaced 40% of the current surface irrigation infrastructure areas. In the northeast United States, limited changes in irrigation depth were predicted under different irrigation infrastructure scenarios because the percentage of surface irrigation area is already low under the baseline climate, and thus there is limited opportunity to adapt to future drought with advanced irrigation infrastructure. These results indicate that other effective solutions are required to complement these measures and aid U.S. agriculture in the future, more extensive drought.


Sign in / Sign up

Export Citation Format

Share Document