scholarly journals The British–Baikal Corridor: A Teleconnection Pattern along the Summertime Polar Front Jet over Eurasia

2019 ◽  
Vol 32 (3) ◽  
pp. 877-896 ◽  
Author(s):  
Peiqiang Xu ◽  
Lin Wang ◽  
Wen Chen

The British–Baikal Corridor (BBC) pattern, a new teleconnection along the summertime upper-tropospheric polar front jet (PFJ), is investigated based on observational and reanalysis datasets. The BBC pattern consists of four geographically fixed centers over the west of the British Isles, the Baltic Sea, western Siberia, and Lake Baikal, respectively. It features a zonally oriented and meridionally confined wavelike structure with a zonal wavenumber 5, and it influences the climate along its route significantly. The BBC pattern forms from the trapped effect of the PFJ waveguide that is characterized by a strong meridional gradient of stratification. As a preferred dynamical mode inherent in the PFJ, it is maintained through the baroclinic energy conversion from the basic flow and the feedback forcing of high-frequency transient eddies. Meanwhile, its geographical location is determined by the barotropic energy conversion, which is sensitive to the configuration of the basic flow. The interannual variability of the BBC pattern is dominated by atmospheric internal dynamics considering its loose relation with immediate atmospheric external forcing. Further analyses suggest that the BBC pattern is excited by the active multiscale interactions among the climatological mean flow, the low-frequency flow, and the synoptic-scale transient eddies in the exit region of the North Atlantic jet, which may also determine the preferential upstream forcing region and anchor the BBC pattern geographically. Budget analyses on vorticity, temperature, and water vapor are performed to interpret the physical nature of the BBC pattern. The possible linkage to the North Atlantic Oscillation is also discussed.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pawel Schlichtholz

Abstract A remarkable feature of interannual climate variability is a robust link of wintertime anomalies of surface air temperature (SAT) in northern Asia to pan-Atlantic SAT variations associated with the North Atlantic Oscillation (NAO). Here statistical analyses of data from the era of satellite observations (1979–2017) are used to show that about 80% of the variance of the winter (December-March) mean area-averaged SAT anomalies in northern Asia can be explained by the anomalous surface circulation associated with an NAO-like mode of sea level pressure variability over extratropical Eurasia. These SAT anomalies are related equally strongly to the “Lake Baikal” vortex representing variations of the upper-tropospheric circulation over northern Asia. Support is given for the scenario that this vortex drives SAT anomalies in northern Asia via surface-reaching displacements of isentropic surfaces and that it is coupled to climate variability in the Euro-Atlantic sector via interactions between the North Atlantic storm track, quasi-stationary planetary waves, and zonal-mean zonal winds. The results underpin the importance of a lesser-known zonal wavenumber-3 structure of disturbances trapped over Eurasia by the polar front jet rather than the better-known zonal wavenumber-5 structure of disturbances trapped by the subtropical jet for NAO teleconnections.


2017 ◽  
Vol 47 (6) ◽  
pp. 1281-1289 ◽  
Author(s):  
A. M. Treguier ◽  
C. Lique ◽  
J. Deshayes ◽  
J. M. Molines

AbstractCorrelations between temperature and velocity fluctuations are a significant contribution to the North Atlantic meridional heat transport, especially at the northern boundary of the subtropical gyre. In satellite observations and in a numerical model at ⅞° resolution, a localized pattern of positive eddy heat flux is found northwest of the Gulf Stream, downstream of its separation at Cape Hatteras. It is confined to the upper 500 m. A simple kinematic model of a meandering jet can explain the surface eddy flux, taking into account a spatial shift between the maximum velocity of the jet and the maximum cross-jet temperature gradient. In the Gulf Stream such a spatial shift results from the nonlinear temperature profile and the vertical tilting of the velocity profile with depth. The numerical model suggests that the meandering of the Gulf Stream could account, at least in part, for the large eddy heat transport (of order 0.3 PW) near 36°N in the North Atlantic and for its compensation by the mean flow.


2019 ◽  
Vol 15 (2) ◽  
pp. 701-711 ◽  
Author(s):  
Bassem Jalali ◽  
Marie-Alexandrine Sicre ◽  
Julien Azuara ◽  
Violaine Pellichero ◽  
Nathalie Combourieu-Nebout

Abstract. The 4.2 ka BP event, spanning from ca 4200 to 3900 cal BP, has been documented in numerous archaeological data and continental archives across the Northern Hemisphere as an abrupt shift to dry and cold climate. However, data on synchronous ocean circulation changes are notably lacking, thus preventing us from getting a full insight into the physical mechanisms responsible for this climate deterioration. Here, we present two high-resolution (5–20 years) sea surface temperature (SST) records from the subpolar gyre and off north Iceland in the vicinity of the polar front obtained from alkenone paleo-thermometry and compare them with proxy data from the western Mediterranean Sea to gain information on regional temperature and precipitation patterns. Our results are evidence of a temperature dipole pattern which, combined with other paleo-oceanographic records of the North Atlantic, suggests a weakening of the subpolar gyre possibly associated with atmospheric blocked regimes.


2018 ◽  
Vol 31 (15) ◽  
pp. 5793-5810 ◽  
Author(s):  
Mi-Kyung Sung ◽  
Seon-Hwa Kim ◽  
Baek-Min Kim ◽  
Yong-Sang Choi

This study investigates the origin of the interdecadal variability in the warm Arctic and cold Eurasia (WACE) pattern, which is defined as the second empirical orthogonal function of surface air temperature (SAT) variability over the Eurasian continent in Northern Hemisphere winter, by analyzing the Twentieth Century Reanalysis dataset. While previous studies highlight recent enhancement of the WACE pattern, ascribing it to anthropogenic warming, the authors found that the WACE pattern has experienced a seemingly periodic interdecadal variation over the twentieth century. This long-term variation in the Eurasian SAT is attributable to the altered coupling between the Siberian high (SH) and intraseasonal Rossby wave emanating from the North Atlantic, as the local wave branch interacts with the SH and consequentially enhances the continental temperature perturbation. It is further identified that these atmospheric circulation changes in Eurasia are largely controlled by the decadal amplitude modulation of the climatological stationary waves over the North Atlantic region. The altered decadal mean condition of stationary wave components brings changes in local baroclinicity and storm track activity over the North Atlantic, which jointly change the intraseasonal Rossby wave generation and propagation characteristics as well. With simple stationary wave model experiments, the authors confirm how the altered mean flow condition in the North Atlantic acts as a source for the growth of the Rossby wave that leads to the change in the downstream WACE pattern.


2019 ◽  
Vol 32 (22) ◽  
pp. 7697-7712 ◽  
Author(s):  
Yu Nie ◽  
Hong-Li Ren ◽  
Yang Zhang

Abstract Considerable progress has been made in understanding the internal eddy–mean flow feedback in the subseasonal variability of the North Atlantic Oscillation (NAO) during winter. Using daily atmospheric and oceanic reanalysis data, this study highlights the role of extratropical air–sea interaction in the NAO variability during autumn when the daily sea surface temperature (SST) variability is more active and eddy–mean flow interactions are still relevant. Our analysis shows that a horseshoe-like SST tripolar pattern in the North Atlantic Ocean, marked by a cold anomaly in the Gulf Stream and two warm anomalies to the south of the Gulf Stream and off the western coast of northern Europe, can induce a quasi-barotropic NAO-like atmospheric response through eddy-mediated processes. An initial southwest–northeast tripolar geopotential anomaly in the North Atlantic forces this horseshoe-like SST anomaly tripole. Then the SST anomalies, through surface heat flux exchange, alter the spatial patterns of the lower-tropospheric temperature and thus baroclinicity anomalies, which are manifested as the midlatitude baroclinicity shifted poleward and reduced baroclinicity poleward of 70°N. In response to such changes of the lower-level baroclinicity, anomalous synoptic eddy generation, eddy kinetic energy, and eddy momentum forcing in the midlatitudes all shift poleward. Meanwhile, the 10–30-day low-frequency anticyclonic wave activities in the high latitudes decrease significantly. We illustrate that both the latitudinal displacement of midlatitude synoptic eddy activities and intensity variation of high-latitude low-frequency wave activities contribute to inducing the NAO-like anomalies.


Tellus ◽  
1955 ◽  
Vol 7 (1) ◽  
pp. 111-117
Author(s):  
WILLIAM HUBERT ◽  
YNGVE DAGEL

2007 ◽  
Vol 20 (14) ◽  
pp. 3510-3526 ◽  
Author(s):  
Christophe Cassou ◽  
Clara Deser ◽  
Michael A. Alexander

Abstract Extratropical SSTs can be influenced by the “reemergence mechanism,” whereby thermal anomalies in the deep winter mixed layer persist at depth through summer and are then reentrained into the mixed layer in the following winter. The impact of reemergence in the North Atlantic Ocean (NAO) upon the climate system is investigated using an atmospheric general circulation model coupled to a mixed layer ocean/thermodynamic sea ice model. The dominant pattern of thermal anomalies below the mixed layer in summer in a 150-yr control integration is associated with the North Atlantic SST tripole forced by the NAO in the previous winter as indicated by singular value decomposition (SVD). To isolate the reemerging signal, two additional 60-member ensemble experiments were conducted in which temperature anomalies below 40 m obtained from the SVD analysis are added to or subtracted from the control integration. The reemerging signal, given by the mean difference between the two 60-member ensembles, causes the SST anomaly tripole to recur, beginning in fall, amplifying through January, and persisting through the following spring. The atmospheric response to these SST anomalies resembles the circulation that created them the previous winter but with reduced amplitude (10–20 m at 500 mb per °C), modestly enhancing the winter-to-winter persistence of the NAO. Changes in the transient eddies and their interactions with the mean flow contribute to the large-scale equivalent barotropic response throughout the troposphere. The latter can also be attributed to the change in occurrence of intrinsic weather regimes.


Sign in / Sign up

Export Citation Format

Share Document