scholarly journals The Impact of SST Biases in the Tropical East Pacific and Agulhas Current Region on Atmospheric Stationary Waves in the Southern Hemisphere

2020 ◽  
Vol 33 (21) ◽  
pp. 9351-9374
Author(s):  
Chaim I. Garfinkel ◽  
Ian White ◽  
Edwin P. Gerber ◽  
Martin Jucker

AbstractClimate models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) vary significantly in their ability to simulate the phase and amplitude of atmospheric stationary waves in the midlatitude Southern Hemisphere. These models also suffer from a double intertropical convergence zone (ITCZ), with excessive precipitation in the tropical eastern South Pacific, and many also suffer from a biased simulation of the dynamics of the Agulhas Current around the tip of South Africa. The intermodel spread in the strength and phasing of SH midlatitude stationary waves in the CMIP archive is shown to be significantly correlated with the double-ITCZ bias and biases in the Agulhas Return Current. An idealized general circulation model (GCM) is used to demonstrate the causality of these links by prescribing an oceanic heat flux out of the tropical east Pacific and near the Agulhas Current. A warm bias in tropical east Pacific SSTs associated with an erroneous double ITCZ leads to a biased representation of midlatitude stationary waves in the austral hemisphere, capturing the response evident in CMIP models. Similarly, an overly diffuse sea surface temperature gradient associated with a weak Agulhas Return Current leads to an equatorward shift of the Southern Hemisphere jet by more than 3° and weak stationary wave activity in the austral hemisphere. Hence, rectification of the double-ITCZ bias and a better representation of the Agulhas Current should be expected to lead to an improved model representation of the austral hemisphere.

2020 ◽  
Author(s):  
Chaim Garfinkel ◽  
Ian White ◽  
Edwin Gerber ◽  
Martin Jucker

<p>A common model bias in comprehensive climate models used in climate assessements such as the Coupled Model Intercomparison Project is a double inter-tropical convergence, with excessive precipitation in the tropical eastern South Pacific. In addition, the current generation of climate models cannot adequately resolve the dynamics of the Agulhas Current, and in particular the relative fraction of the Current that leaks into the Atlantic as opposed to retroflecting back into the Indian Ocean. The intermodel spread in the magnitude of the double ITCZ bias is   significantly correlated with the strength and phasing of   SH stationary waves in the CMIP archive, with models with a smaller bias generally showing more realistic stationary waves. An intermediate complexity moist General Circulation Model is used to demonstrate the causality of this connection: by fluxing heat out of  the tropical South Pacific Ocean, we can capture the  responses seen in CMIP5 models.  Finally, the same intermediate complexity moist General Circulation Model is used to demonstrate that an overly diffuse Agulhas leads to an equatorward shift of the Southern Hemisphere jet by more than  3degrees, and indeed an overly equatorward Southern Hemisphere jet is a common model bias in most CMIP5 models.</p>


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2014 ◽  
Vol 27 (13) ◽  
pp. 4923-4936 ◽  
Author(s):  
Graham R. Simpkins ◽  
Shayne McGregor ◽  
Andréa S. Taschetto ◽  
Laura M. Ciasto ◽  
Matthew H. England

The austral spring relationships between sea surface temperature (SST) trends and the Southern Hemisphere (SH) extratropical atmospheric circulation are investigated using an atmospheric general circulation model (AGCM). A suite of simulations are analyzed wherein the AGCM is forced by underlying SST conditions in which recent trends are constrained to individual ocean basins (Pacific, Indian, and Atlantic), allowing the impact of each region to be assessed in isolation. When forced with observed global SST, the model broadly replicates the spatial pattern of extratropical SH geopotential height trends seen in reanalyses. However, when forcing by each ocean basin separately, similar structures arise only when Atlantic SST trends are included. It is further shown that teleconnections from the Atlantic are associated with perturbations to the zonal Walker circulation and the corresponding intensification of the local Hadley cell, the impact of which results in the development of atmospheric Rossby waves. Thus, increased Rossby waves, forced by positive Atlantic SST trends, may have played a role in driving geopotential height trends in the SH extratropics. Furthermore, these atmospheric circulation changes promote warming throughout the Antarctic Peninsula and much of West Antarctica, with a pattern that closely matches recent observational records. This suggests that Atlantic SST trends, via a teleconnection to the SH extratropics, may have contributed to springtime climatic change in the SH extratropics over the past three decades.


2009 ◽  
Vol 22 (8) ◽  
pp. 1920-1933 ◽  
Author(s):  
Edwin P. Gerber ◽  
Lorenzo M. Polvani

Abstract The impact of stratospheric variability on the dynamical coupling between the stratosphere and the troposphere is explored in a relatively simple atmospheric general circulation model. Variability of the model’s stratospheric polar vortex, or polar night jet, is induced by topographically forced stationary waves. A robust relationship is found between the strength of the stratospheric polar vortex and the latitude of the tropospheric jet, confirming and extending earlier results in the absence of stationary waves. In both the climatological mean and on intraseasonal time scales, a weaker vortex is associated with an equatorward shift in the tropospheric jet and vice versa. It is found that the mean structure and variability of the vortex in the model is very sensitive to the amplitude of the topography and that Northern Hemisphere–like variability, with a realistic frequency of stratospheric sudden warming events, occurs only for a relatively narrow range of topographic heights. When the model captures sudden warming events with fidelity, however, the exchange of information both upward and downward between the troposphere and stratosphere closely resembles that in observations. The influence of stratospheric variability on variability in the troposphere is demonstrated by comparing integrations with and without an active stratosphere. A realistic, time-dependent stratospheric circulation increases the persistence of the tropospheric annular modes, and the dynamical coupling is most apparent prior to and following stratospheric sudden warming events.


2013 ◽  
Vol 70 (5) ◽  
pp. 1437-1455 ◽  
Author(s):  
Felix Bunzel ◽  
Hauke Schmidt

Abstract Most climate models simulate a strengthening of the Brewer–Dobson circulation (BDC) under a changing climate. However, the magnitude of the trend as well as the underlying mechanisms varies significantly among the models. In this work the impact of both vertical resolution and vertical extent of a model on the simulated BDC change is investigated by analyzing sensitivity simulations performed with the general circulation model ECHAM6 in three different model configurations for three different climate states. Tropical upwelling velocities and age of stratospheric air are used as measures for the strength of the BDC. Both consistently show a BDC strengthening from the preindustrial to the future climate state for all configurations of the model. However, the amplitude and origin of this change vary between the different setups. Analyses of the tropical upward mass flux indicate that in the model with a lid at 10 hPa the BDC strengthening at 70 hPa is primarily produced by resolved wave drag, while in the model with a higher lid (0.01 hPa) the parameterized wave drag yields the main contribution to the BDC increase. This implies that consistent changes in the BDC originate from different causes when the stratosphere is not sufficiently resolved in a model. Furthermore, the effect of enhancing the horizontal diffusion in the upper model layers to avoid resolved wave reflection at the model lid is quantified, and a possible link to the different behavior of the low-top model with regard to the origin of the BDC change is identified.


2020 ◽  
Author(s):  
Veeshan Narinesingh ◽  
James F. Booth ◽  
Spencer K. Clark ◽  
Yi Ming

Abstract. Atmospheric blocking can have important impacts on weather hazards, but the fundamental dynamics of blocking are not yet fully understood. As such, this work investigates the influence of topography on atmospheric blocking in terms of dynamics, spatial frequency, duration and displacement. Using an idealized GCM, an aquaplanet integration, and integrations with topography are analyzed. Block-centered composites show midlatitude aquaplanet blocks exhibit similar wave activity flux behavior to those observed in reality, whereas high-latitude blocks do not. The addition of topography significantly increases blocking and determines distinct regions where blocks are most likely to occur. These regions are found near high-pressure anomalies in the stationary waves and near storm track exit regions. Focusing on block duration, blocks originating near topography are found to last longer than those that are formed without or far from topography but have qualitatively similar evolutions in terms of nearby geopotential height anomalies and wave activity fluxes in composites. Integrations with two mountains have greater amounts of blocking compared to the single mountain case, however, the longitudinal spacing between the mountains is important for how much blocking occurs. Comparison between integrations with longitudinally long and short ocean basins show that more blocking occurs when storm track exits spatially overlap with high-pressure maxima in stationary waves. These results have real-world implications, as they help explain the differences in blocking between the Northern and Southern Hemisphere, and the differences between the Pacific and Atlantic regions in the Northern Hemisphere.


2010 ◽  
Vol 23 (12) ◽  
pp. 3397-3415 ◽  
Author(s):  
Catherine M. Naud ◽  
Anthony D. Del Genio ◽  
Mike Bauer ◽  
William Kovari

Abstract Cloud vertical distributions across extratropical warm and cold fronts are obtained using two consecutive winters of CloudSat–Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations and National Centers for Environmental Prediction reanalysis atmospheric state parameters over the Northern and Southern Hemisphere oceans (30°–70°N/S) between November 2006 and September 2008. These distributions generally resemble those from the original model introduced by the Bergen School in the 1920s, with the following exceptions: 1) substantial low cloudiness, which is present behind and ahead of the warm and cold fronts; 2) ubiquitous high cloudiness, some of it very thin, throughout the warm-frontal region; and 3) upright convective cloudiness near and behind some warm fronts. One winter of GISS general circulation model simulations of Northern and Southern Hemisphere warm and cold fronts at 2° × 2.5° × 32 levels resolution gives similar cloud distributions but with much lower cloud fraction, a shallower depth of cloudiness, and a shorter extent of tilted warm-frontal cloud cover on the cold air side of the surface frontal position. A close examination of the relationship between the cloudiness and relative humidity fields indicates that water vapor is not lifted enough in modeled midlatitude cyclones and this is related to weak vertical velocities in the model. The model also produces too little cloudiness for a given value of vertical velocity or relative humidity. For global climate models run at scales coarser than tens of kilometers, the authors suggest that the current underestimate of modeled cloud cover in the storm track regions, and in particular the 50°–60°S band of the Southern Oceans, could be reduced with the implementation of a slantwise convection parameterization.


2020 ◽  
Vol 1 (2) ◽  
pp. 293-311
Author(s):  
Veeshan Narinesingh ◽  
James F. Booth ◽  
Spencer K. Clark ◽  
Yi Ming

Abstract. Many fundamental questions remain about the roles and effects of stationary forcing on atmospheric blocking. As such, this work utilizes an idealized moist general circulation model (GCM) to investigate atmospheric blocking in terms of dynamics, geographical location, and duration. The model is first configured as an aquaplanet, then orography is added in separate integrations. Block-centered composites of wave activity fluxes and height show that blocks in the aquaplanet undergo a realistic dynamical evolution when compared to reanalysis. Blocks in the aquaplanet are also found to have similar life cycles to blocks in model integrations with orography. These results affirm the usefulness of both zonally symmetric and asymmetric idealized model configurations for studying blocking. Adding orography to the model leads to an increase in blocking. This mirrors what is observed when comparing the Northern Hemisphere (NH) and Southern Hemisphere (SH), where the NH contains more orography and thus more blocking. As the prescribed mountain height increases, so do the magnitude and size of climatological stationary waves, resulting in more blocking overall. Increases in blocking, however, are not spatially uniform. Orography is found to induce regions of enhanced block frequency just upstream of mountains, near high pressure anomalies in the stationary waves, which is poleward of climatological minima in upper-level zonal wind, while block frequency minima and jet maxima occur eastward of the wave trough. This result matches what is observed near the Rocky Mountains. Finally, an analysis of block duration suggests blocks generated near stationary wave maxima last slightly longer than blocks that form far from or without orography. Overall, the results of this work help to explain some of the observed similarities and differences in blocking between the NH and SH and emphasize the importance of general circulation features in setting where blocks most frequently occur.


Author(s):  
Kamal Tewari ◽  
Saroj K. Mishra ◽  
Anupam Dewan ◽  
Abhishek Anand ◽  
In-Sik Kang

AbstractEarth’s orography profoundly influences its climate and is a major reason behind the zonally asymmetric features observed in the atmospheric circulation. The response of the atmosphere to orographic forcing, when idealized aqua mountains are placed individually and in pairs (180° apart) at different latitudes, is investigated in the present study using a simplified general circulation model. The investigation reveals that the atmospheric response to orography is dependent on its latitudinal position: orographically triggered stationary waves in the mid-latitudes are most energetic compared to the waves generated due to anomalous divergence in the tropics. The impact on precipitation is confined to the latitude of the orography when it is placed near the tropics, but when it is situated at higher latitudes, it also has a significant remote impact on the tropics. In general, the tropical mountains block the easterly flow, resulting in a weakening of the Hadley cells and a local reduction in the total poleward flux transport by the stationary eddies. On the other hand, the mid-latitudinal orography triggers planetary-scale Rossby waves and enhances the poleward flux transport by stationary eddies. The twin mountains experiments, which are performed by placing orography in pairs at different latitudes, show that the energy fluxes, stationary wave, and precipitation pattern are not merely the linear additive sum of individual orographic responses at these latitudes. The non-linearity in a diagnostic sense is a product interaction of flow between the two mountains, which depends on the background flow, the separation distance between mountains, and wind shear worldwide.


2020 ◽  
Author(s):  
Veeshan Narinesingh ◽  
James Booth ◽  
Spencer Clark ◽  
Yi Ming

<p>Atmospheric blocking can have important impacts on weather hazards, but the fundamental dynamics of blocking are not yet fully understood. As such, this work investigates the influence of topography on atmospheric blocking in terms of dynamics, spatial frequency, duration and displacement. Using an idealized GCM, an aquaplanet integration, and integrations with topography are analyzed. Block-centered composites show midlatitude aquaplanet blocks exhibit similar wave activity flux behavior to those observed in reality, whereas high-latitude blocks do not. The addition of topography significantly increases blocking and determines distinct regions where blocks are most likely to occur. These regions are found near high-pressure anomalies in the stationary waves and near storm track exit regions. Focusing on block duration, blocks originating near topography are found to last longer than those that are formed without or far from topography but have qualitatively similar evolutions in terms of nearby geopotential height anomalies and wave activity fluxes in composites.  Integrations with two mountains have greater amounts of blocking compared to the single mountain case, however, the longitudinal spacing between the mountains is important for how much blocking occurs. Comparison between integrations with longitudinally long and short ocean basins show that more blocking occurs when storm track exits spatially overlap with high-pressure maxima in stationary waves. These results have real-world implications, as they help explain the differences in blocking between the Northern and Southern Hemisphere, and the differences between the Pacific and Atlantic regions in the Northern Hemisphere.</p>


Sign in / Sign up

Export Citation Format

Share Document