Response of the Atmosphere to Orographic Forcings: Insight from Idealised Simulations

Author(s):  
Kamal Tewari ◽  
Saroj K. Mishra ◽  
Anupam Dewan ◽  
Abhishek Anand ◽  
In-Sik Kang

AbstractEarth’s orography profoundly influences its climate and is a major reason behind the zonally asymmetric features observed in the atmospheric circulation. The response of the atmosphere to orographic forcing, when idealized aqua mountains are placed individually and in pairs (180° apart) at different latitudes, is investigated in the present study using a simplified general circulation model. The investigation reveals that the atmospheric response to orography is dependent on its latitudinal position: orographically triggered stationary waves in the mid-latitudes are most energetic compared to the waves generated due to anomalous divergence in the tropics. The impact on precipitation is confined to the latitude of the orography when it is placed near the tropics, but when it is situated at higher latitudes, it also has a significant remote impact on the tropics. In general, the tropical mountains block the easterly flow, resulting in a weakening of the Hadley cells and a local reduction in the total poleward flux transport by the stationary eddies. On the other hand, the mid-latitudinal orography triggers planetary-scale Rossby waves and enhances the poleward flux transport by stationary eddies. The twin mountains experiments, which are performed by placing orography in pairs at different latitudes, show that the energy fluxes, stationary wave, and precipitation pattern are not merely the linear additive sum of individual orographic responses at these latitudes. The non-linearity in a diagnostic sense is a product interaction of flow between the two mountains, which depends on the background flow, the separation distance between mountains, and wind shear worldwide.

2009 ◽  
Vol 22 (8) ◽  
pp. 1920-1933 ◽  
Author(s):  
Edwin P. Gerber ◽  
Lorenzo M. Polvani

Abstract The impact of stratospheric variability on the dynamical coupling between the stratosphere and the troposphere is explored in a relatively simple atmospheric general circulation model. Variability of the model’s stratospheric polar vortex, or polar night jet, is induced by topographically forced stationary waves. A robust relationship is found between the strength of the stratospheric polar vortex and the latitude of the tropospheric jet, confirming and extending earlier results in the absence of stationary waves. In both the climatological mean and on intraseasonal time scales, a weaker vortex is associated with an equatorward shift in the tropospheric jet and vice versa. It is found that the mean structure and variability of the vortex in the model is very sensitive to the amplitude of the topography and that Northern Hemisphere–like variability, with a realistic frequency of stratospheric sudden warming events, occurs only for a relatively narrow range of topographic heights. When the model captures sudden warming events with fidelity, however, the exchange of information both upward and downward between the troposphere and stratosphere closely resembles that in observations. The influence of stratospheric variability on variability in the troposphere is demonstrated by comparing integrations with and without an active stratosphere. A realistic, time-dependent stratospheric circulation increases the persistence of the tropospheric annular modes, and the dynamical coupling is most apparent prior to and following stratospheric sudden warming events.


2020 ◽  
Author(s):  
Veeshan Narinesingh ◽  
James F. Booth ◽  
Spencer K. Clark ◽  
Yi Ming

Abstract. Atmospheric blocking can have important impacts on weather hazards, but the fundamental dynamics of blocking are not yet fully understood. As such, this work investigates the influence of topography on atmospheric blocking in terms of dynamics, spatial frequency, duration and displacement. Using an idealized GCM, an aquaplanet integration, and integrations with topography are analyzed. Block-centered composites show midlatitude aquaplanet blocks exhibit similar wave activity flux behavior to those observed in reality, whereas high-latitude blocks do not. The addition of topography significantly increases blocking and determines distinct regions where blocks are most likely to occur. These regions are found near high-pressure anomalies in the stationary waves and near storm track exit regions. Focusing on block duration, blocks originating near topography are found to last longer than those that are formed without or far from topography but have qualitatively similar evolutions in terms of nearby geopotential height anomalies and wave activity fluxes in composites. Integrations with two mountains have greater amounts of blocking compared to the single mountain case, however, the longitudinal spacing between the mountains is important for how much blocking occurs. Comparison between integrations with longitudinally long and short ocean basins show that more blocking occurs when storm track exits spatially overlap with high-pressure maxima in stationary waves. These results have real-world implications, as they help explain the differences in blocking between the Northern and Southern Hemisphere, and the differences between the Pacific and Atlantic regions in the Northern Hemisphere.


2009 ◽  
Vol 66 (5) ◽  
pp. 1347-1365 ◽  
Author(s):  
Isla R. Simpson ◽  
Michael Blackburn ◽  
Joanna D. Haigh

Abstract A simplified general circulation model has been used to investigate the chain of causality whereby changes in tropospheric circulation and temperature are produced in response to stratospheric heating perturbations. Spinup ensemble experiments have been performed to examine the evolution of the tropospheric circulation in response to such perturbations. The primary aim of these experiments is to investigate the possible mechanisms whereby a tropospheric response to changing solar activity over the 11-yr solar cycle could be produced in response to heating of the equatorial lower stratosphere. This study therefore focuses on a stratospheric heating perturbation in which the heating is largest in the tropics. For comparison, experiments are also performed in which the stratosphere is heated uniformly at all latitudes and in which it is heated preferentially in the polar region. Thus, the mechanisms discussed have a wider relevance for the impact of stratospheric perturbations on the troposphere. The results demonstrate the importance of changing eddy momentum fluxes in driving the tropospheric response. This is confirmed by the lack of a similar response in a zonally symmetric model with fixed eddy forcing. Furthermore, it is apparent that feedback between the tropospheric eddy fluxes and tropospheric circulation changes is required to produce the full model response. The quasigeostrophic index of refraction is used to diagnose the cause of the changes in eddy behavior. It is demonstrated that the latitudinal extent of stratospheric heating is important in determining the direction of displacement of the tropospheric jet and storm track.


2020 ◽  
Vol 1 (2) ◽  
pp. 293-311
Author(s):  
Veeshan Narinesingh ◽  
James F. Booth ◽  
Spencer K. Clark ◽  
Yi Ming

Abstract. Many fundamental questions remain about the roles and effects of stationary forcing on atmospheric blocking. As such, this work utilizes an idealized moist general circulation model (GCM) to investigate atmospheric blocking in terms of dynamics, geographical location, and duration. The model is first configured as an aquaplanet, then orography is added in separate integrations. Block-centered composites of wave activity fluxes and height show that blocks in the aquaplanet undergo a realistic dynamical evolution when compared to reanalysis. Blocks in the aquaplanet are also found to have similar life cycles to blocks in model integrations with orography. These results affirm the usefulness of both zonally symmetric and asymmetric idealized model configurations for studying blocking. Adding orography to the model leads to an increase in blocking. This mirrors what is observed when comparing the Northern Hemisphere (NH) and Southern Hemisphere (SH), where the NH contains more orography and thus more blocking. As the prescribed mountain height increases, so do the magnitude and size of climatological stationary waves, resulting in more blocking overall. Increases in blocking, however, are not spatially uniform. Orography is found to induce regions of enhanced block frequency just upstream of mountains, near high pressure anomalies in the stationary waves, which is poleward of climatological minima in upper-level zonal wind, while block frequency minima and jet maxima occur eastward of the wave trough. This result matches what is observed near the Rocky Mountains. Finally, an analysis of block duration suggests blocks generated near stationary wave maxima last slightly longer than blocks that form far from or without orography. Overall, the results of this work help to explain some of the observed similarities and differences in blocking between the NH and SH and emphasize the importance of general circulation features in setting where blocks most frequently occur.


2020 ◽  
Author(s):  
Veeshan Narinesingh ◽  
James Booth ◽  
Spencer Clark ◽  
Yi Ming

<p>Atmospheric blocking can have important impacts on weather hazards, but the fundamental dynamics of blocking are not yet fully understood. As such, this work investigates the influence of topography on atmospheric blocking in terms of dynamics, spatial frequency, duration and displacement. Using an idealized GCM, an aquaplanet integration, and integrations with topography are analyzed. Block-centered composites show midlatitude aquaplanet blocks exhibit similar wave activity flux behavior to those observed in reality, whereas high-latitude blocks do not. The addition of topography significantly increases blocking and determines distinct regions where blocks are most likely to occur. These regions are found near high-pressure anomalies in the stationary waves and near storm track exit regions. Focusing on block duration, blocks originating near topography are found to last longer than those that are formed without or far from topography but have qualitatively similar evolutions in terms of nearby geopotential height anomalies and wave activity fluxes in composites.  Integrations with two mountains have greater amounts of blocking compared to the single mountain case, however, the longitudinal spacing between the mountains is important for how much blocking occurs. Comparison between integrations with longitudinally long and short ocean basins show that more blocking occurs when storm track exits spatially overlap with high-pressure maxima in stationary waves. These results have real-world implications, as they help explain the differences in blocking between the Northern and Southern Hemisphere, and the differences between the Pacific and Atlantic regions in the Northern Hemisphere.</p>


2016 ◽  
Vol 9 (2) ◽  
pp. 789-797 ◽  
Author(s):  
Daniele Rossi ◽  
Alberto Maurizi ◽  
Maurizio Fantini

Abstract. The development and verification of the convective module of IL-GLOBO, a Lagrangian transport model coupled online with the Eulerian general circulation model GLOBO, is described. The online-coupling promotes the full consistency between the Eulerian and the Lagrangian components of the model. The Lagrangian convective scheme is based on the Kain–Fritsch convective parametrization used in GLOBO. A transition probability matrix is computed using the fluxes provided by the Eulerian KF parametrization. Then, the convective redistribution of Lagrangian particles is implemented via a Monte Carlo scheme. The formal derivation is described in details and, consistently with the Eulerian module, includes the environmental flux in the transition probability matrix to avoid splitting of the convection and subsidence processes. Consistency of the Lagrangian implementation with its Eulerian counterpart is verified by computing environment fluxes from the transition probability matrix and comparing them to those computed by the Eulerian module. Assessment of the impact of the module is made for different latitudinal belts, showing that the major impact is found in the Tropics, as expected. Concerning vertical distribution, the major impact is observed in the boundary layer at every latitude, while in the tropical area, the influence extends to very high levels.


2013 ◽  
Vol 9 (1) ◽  
pp. 13-26 ◽  
Author(s):  
S. Dietrich ◽  
M. Werner ◽  
T. Spangehl ◽  
G. Lohmann

Abstract. In this study we investigate the impact of mid- and late Holocene orbital forcing and solar activity on variations of the oxygen isotopic composition in precipitation. The investigation is motivated by a recently published speleothem δ18O record from the well-monitored Bunker Cave in Germany. The record reveals some high variability on multi-centennial to millennial scales that does not linearly correspond to orbital forcing. Our model study is based on a set of novel climate simulations performed with the atmosphere general circulation model ECHAM5-wiso enhanced by explicit water isotope diagnostics. From the performed model experiments, we derive the following major results: (1) the response of both orbital and solar forcing lead to changes in surface temperatures and δ18O in precipitation with similar magnitudes during the mid- and late Holocene. (2) Past δ18O anomalies correspond to changing temperatures in the orbital driven simulations. This does not hold true if an additional solar forcing is added. (3) Two orbital driven mid-Holocene experiments, simulating the mean climate state approximately 5000 and 6000 yr ago, yield very similar results. However, if an identical additional solar activity-induced forcing is added, the simulated changes of surface temperatures as well as δ18O between both periods differ. We conclude from our simulation results that non-linear effects and feedbacks of the orbital and solar activity forcing substantially alter the δ18O in precipitation pattern and its relation to temperature change.


2015 ◽  
Vol 8 (9) ◽  
pp. 8239-8261
Author(s):  
D. Rossi ◽  
A. Maurizi ◽  
M. Fantini

Abstract. The development and verification of the convective module of IL-GLOBO, a Lagrangian transport model coupled online with the Eulerian general circulation model GLOBO, is described. The online-coupling promotes the full consistency between the Eulerian and the Lagrangian components of the model. The Lagrangian convective scheme is derived based on the Kain–Fritsch convective parameterisation used in GLOBO. A transition probability matrix is computed using the fluxes provided by the Eulerian KF parameterisation. Then, the convection redistribution of Lagrangian particles is implemented via a Monte Carlo scheme. The formal derivation is described in details and, consistently with the Eulerian module, includes the environmental flux in the transition probability matrix to avoid splitting of the convection and subsidence processes. Consistency of the Lagrangian implementation with its Eulerian counterpart is verified by computing environment fluxes from the transition probability matrix and comparing them to those computed by the Eulerian module. Assessment of the impact of the module is made for different latitudinal belts, showing that the major impact is found in the tropics, as expected. Concerning vertical distribution, the major impact is observed in the boundary layer at every latitude, while in the tropical area, the influence extends to very high levels.


2020 ◽  
Vol 33 (21) ◽  
pp. 9351-9374
Author(s):  
Chaim I. Garfinkel ◽  
Ian White ◽  
Edwin P. Gerber ◽  
Martin Jucker

AbstractClimate models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) vary significantly in their ability to simulate the phase and amplitude of atmospheric stationary waves in the midlatitude Southern Hemisphere. These models also suffer from a double intertropical convergence zone (ITCZ), with excessive precipitation in the tropical eastern South Pacific, and many also suffer from a biased simulation of the dynamics of the Agulhas Current around the tip of South Africa. The intermodel spread in the strength and phasing of SH midlatitude stationary waves in the CMIP archive is shown to be significantly correlated with the double-ITCZ bias and biases in the Agulhas Return Current. An idealized general circulation model (GCM) is used to demonstrate the causality of these links by prescribing an oceanic heat flux out of the tropical east Pacific and near the Agulhas Current. A warm bias in tropical east Pacific SSTs associated with an erroneous double ITCZ leads to a biased representation of midlatitude stationary waves in the austral hemisphere, capturing the response evident in CMIP models. Similarly, an overly diffuse sea surface temperature gradient associated with a weak Agulhas Return Current leads to an equatorward shift of the Southern Hemisphere jet by more than 3° and weak stationary wave activity in the austral hemisphere. Hence, rectification of the double-ITCZ bias and a better representation of the Agulhas Current should be expected to lead to an improved model representation of the austral hemisphere.


2012 ◽  
Vol 25 (6) ◽  
pp. 1847-1853 ◽  
Author(s):  
Sidonie Brachet ◽  
Francis Codron ◽  
Yizhak Feliks ◽  
Michael Ghil ◽  
Hervé Le Treut ◽  
...  

Abstract The atmospheric effects of sea surface temperature (SST) anomalies over and near western boundary currents are a matter of renewed interest. The general circulation model (GCM) of the Laboratoire de Météorologie Dynamique (LMD-Z) has a zooming capability that allows a regionally increased resolution. This GCM is used to analyze the impact of a sharp SST front in the North Atlantic Ocean: two simulations are compared, one with climatological SSTs and the other with an enhanced Gulf Stream front. The results corroborate the theory developed previously by the present team to explain the impact of oceanic fronts. In this theory, the vertical velocity at the top of the atmospheric boundary layer has two components: mechanical and thermal. It is the latter that is dominant in the tropics, while in midlatitudes both play a role in determining the wind convergence above the boundary layer. The strengthened SST front does generate the previously predicted stronger ascent above the warmer water south of the front and stronger descent above the colder waters to the north. In the GCM simulations, the ascent over the warm anomalies is deeper and more intense than the descent.


Sign in / Sign up

Export Citation Format

Share Document