Variability in QBO Temperature Anomalies on Annual and Decadal Time Scales

2021 ◽  
Vol 34 (2) ◽  
pp. 589-605
Author(s):  
Zane Martin ◽  
Adam Sobel ◽  
Amy Butler ◽  
Shuguang Wang

AbstractThe stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known.

2014 ◽  
Vol 71 (4) ◽  
pp. 1305-1322 ◽  
Author(s):  
David A. Ortland ◽  
M. Joan Alexander

Abstract Latent heating estimates derived from rainfall observations are used to construct model experiments that isolate equatorial waves forced by tropical convection from midlatitude synoptic-scale waves. These experiments are used to demonstrate that quasi-stationary equatorial Rossby waves forced by latent heating drive most of the observed residual-mean upwelling across the tropopause transition layer within 15° of the equator. The seasonal variation of the equatorial waves and the mean meridional upwelling that they cause is examined for two full years from 2006 to 2007. Changes in equatorial Rossby wave propagation through seasonally varying mean winds are the primary mechanism for producing an annual variation in the residual-mean upwelling. In the tropical tropopause layer, averaged within 15° of the equator and between 90 and 190 hPa, the annual cycle varies between a maximum upwelling of 0.4 mm s−1 during boreal winter and spring and a minimum of 0.2 mm s−1 during boreal summer. This variability seems to be due to small changes in the mean wind speed in the tropics. Seasonal variations in latent heating have only a relatively minor effect on seasonal variations in tropical tropopause upwelling. In addition, Kelvin waves drive a small downward component of the total circulation over the equator that may be modulated by the quasi-biennial oscillation.


2017 ◽  
Author(s):  
Hao Ye ◽  
Andrew E. Dessler ◽  
Wandi Yu

Abstract. Water vapor interannual variability in the tropical tropopause layer (TTL) is investigated using satellite observations and model simulations. We breakdown the influences of the Brewer-Dobson circulation (BDC), the quasi-biennial oscillation (QBO), and the tropospheric temperature (ΔT) as a function of latitude and longitude using a 2-dimensional multivariable linear regression. This allows us to examine the spatial distribution of the impact on TTL water vapor from these physical processes. In agreement with expectation, we find that the impacts from the BDC and QBO act on TTL water vapor by changing TTL temperature. For ΔT, we find that TTL temperatures alone cannot explain the influence. We hypothesize a moistening role for the evaporation of convective ice from increased deep convection as troposphere warms. Tests with simulations from GEOSCCM and a corresponding trajectory model support this hypothesis.


2019 ◽  
Author(s):  
Young-Ha Kim ◽  
George N. Kiladis ◽  
John R. Albers ◽  
Juliana Dias ◽  
Masatomo Fujiwara ◽  
...  

Abstract. Equatorial Kelvin and mixed Rossby-gravity (MRG) waves in the tropical tropopause layer and stratosphere represented in recent reanalyses for the period of 1981–2010 are compared in terms of spectral characteristics, spatial structures, long-term variations and their forcing of the quasi-biennial oscillation. For both wave types, the spectral distributions are broadly similar among most of the reanalyses, while the peak amplitudes exhibit considerable spread. The longitudinal distributions and spatial patterns of wave perturbations show reasonable agreement between the reanalyses. A few exceptions to the similarity of the spectral shapes and spatial structures among them are also noted. While the interannual variations of wave activity appear to be coherent for both the Kelvin and MRG waves, there is substantial variability in long-term trends among the reanalyses. Most of the reanalyses which assimilate satellite data exhibit large increasing trends in wave variance (~ 15–50 % increase in the 30 years at 100–10 hPa), whereas one reanalysis (JRA-55C) produced without satellite data does not. Several discontinuities are found around 1998 in the time series of the Kelvin and MRG wave variances, which manifest in different ways depending on the reanalysis, and are indicative of impacts of the transition of satellite measurements during that year. The equatorial wave forcing of the quasi-biennial oscillation, estimated by the Eliassen–Palm flux divergence, occurs in similar phase-speed ranges among the reanalyses, while the forcing magnitudes show considerable spread. The forcing maxima of the Kelvin waves exhibit slightly different altitudes between the reanalyses (by ~ 3 km at around 15 hPa). In addition, at around 20 hPa, a wave signal which appears only in easterly mean winds with westward phase speeds is found and discussed.


2011 ◽  
Vol 4 (2) ◽  
pp. 1185-1211 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
G. Günther ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact on the composition of the tropical lower stratosphere of quasi-horizontal in-mixing into the tropical tropopause layer from the mid-latitude stratosphere. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F, and CO2) in the lower tropical stratosphere. The boundary conditions at the ground are represented for the long-lived trace substances CH4, N2O, CCl3F, and CO2 based on ground-based measurements. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements. We find that the zonally averaged tropical CO anomaly patterns simulated by this model version of CLaMS are in good agreement with observations. The introduction of a new scheme in the ECMWF integrated forecast system (Tompkins et al., 2007) for the ice supersaturation after September 2006, results in a somewhat less good agreement between observed and simulated CO patterns in the tropical lower stratosphere after this date.


2019 ◽  
Vol 76 (3) ◽  
pp. 669-688 ◽  
Author(s):  
Zane Martin ◽  
Shuguang Wang ◽  
Ji Nie ◽  
Adam Sobel

Abstract This study examines the relationship between the Madden–Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO) in a limited-area cloud-resolving model with parameterized large-scale dynamics. The model is used to simulate two consecutive MJO events that occurred during the late fall and early winter of 2011. To test the influence of the QBO on the simulated MJO events, various QBO states are imposed via the addition of characteristic wind and temperature anomalies. In experiments with only QBO temperature anomalies imposed (without corresponding zonal wind anomalies) the strength of convection during MJO active phases is amplified for the QBO easterly phase [an anomalously cold tropical tropopause layer (TTL)] compared to the westerly QBO phase (a warm TTL), as measured by outgoing longwave radiation, cloud fraction, and large-scale ascent. This response is qualitatively consistent with the observed MJO–QBO relationship. The response of precipitation is weaker, and is less consistent across variations in the simulation configuration. Experiments with only imposed QBO wind anomalies (without corresponding temperature anomalies) show much weaker effects altogether than those with imposed temperature anomalies, suggesting that TTL temperature anomalies are a key pathway through which the QBO can modulate the MJO. Sensitivity tests indicate that the QBO influence on MJO convection depends on both the amplitude and the height of the QBO temperature anomaly: lower-altitude and larger-amplitude temperature anomalies have more pronounced effects on MJO convection.


2021 ◽  
Vol 21 (15) ◽  
pp. 11689-11722
Author(s):  
Ralf Weigel ◽  
Christoph Mahnke ◽  
Manuel Baumgartner ◽  
Antonis Dragoneas ◽  
Bärbel Vogel ◽  
...  

Abstract. During the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal, with eight mission flights of the M-55 Geophysica in the upper troposphere–lower stratosphere (UTLS) of the Asian monsoon anticyclone (AMA) over northern India, Nepal, and Bangladesh. More than 100 events of new particle formation (NPF) were observed. In total, more than 2 h of flight time was spent under NPF conditions as indicated by the abundant presence of nucleation-mode aerosols, i.e. with particle diameters dp smaller than 15 nm, which were detected in situ by means of condensation nuclei counting techniques. Mixing ratios of nucleation-mode particles (nnm) of up to ∼ 50 000 mg−1 were measured at heights of 15–16 km (θ ≈ 370 K). NPF was most frequently observed at ∼ 12–16 km altitude (θ ≈ 355–380 K) and mainly below the tropopause. Resulting nnm remained elevated (∼ 300–2000 mg−1) up to altitudes of ∼ 17.5 km (θ ≈ 400 K), while under NPF conditions the fraction (f) of sub-micrometre-sized non-volatile residues (dp > 10 nm) remained below 50 %. At ∼ 12–14 km (θ ≈ 355–365 K) the minimum of f (< 15 %) was found, and underneath, the median f generally remains below 25 %. The persistence of particles at nucleation-mode sizes is limited to a few hours, mainly due to coagulation, as demonstrated by a numerical simulation. The frequency of NPF events observed during StratoClim 2017 underlines the importance of the AMA as a source region for UTLS aerosols and for the formation and maintenance of the Asian tropopause aerosol layer (ATAL). The observed abundance of NPF-produced nucleation-mode particles within the AMA is not unambiguously attributable to (a) specific source regions in the boundary layer (according to backward trajectory analyses), or (b) the direct supply with precursor material by convective updraught (from correlations of NPF with carbon monoxide), or (c) the recent release of NPF-capable material from the convective outflow (according to air mass transport times in the tropical tropopause layer, TTL). Temperature anomalies with ΔT of 2 K (peak-to-peak amplitude), as observed at a horizontal wavelength of ∼ 70–100 km during a level flight of several hours, match with NPF detections and represent an additional mechanism for local increases in supersaturation of the NPF precursors. Effective precursor supply and widely distributed temperature anomalies within the AMA can explain the higher frequency of intense NPF observed during StratoClim 2017 than all previous NPF detections with COPAS (COndensation PArticle counting System) at TTL levels over Brazil, northern Australia, or West Africa.


2013 ◽  
Vol 13 (4) ◽  
pp. 9653-9679 ◽  
Author(s):  
M. R. Schoeberl ◽  
A. E. Dessler ◽  
T. Wang

Abstract. The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and the Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air as a result of the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies – both wet and dry – correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels that originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.


2015 ◽  
Vol 15 (18) ◽  
pp. 10239-10249 ◽  
Author(s):  
S. Ravindra Babu ◽  
M. Venkat Ratnam ◽  
G. Basha ◽  
B. V. Krishnamurthy ◽  
B. Venkateswararao

Abstract. Tropical cyclones (TCs) are deep convective synoptic-scale systems that play an important role in modifying the thermal structure, tropical tropopause parameters and hence also modify stratosphere–troposphere exchange (STE) processes. In the present study, high vertical resolution and high accuracy measurements from COSMIC Global Positioning System (GPS) radio occultation (RO) measurements are used to investigate and quantify the effect of tropical cyclones that occurred over Bay of Bengal and Arabian Sea in the last decade on the tropical tropopause parameters. The tropopause parameters include cold-point tropopause altitude (CPH) and temperature (CPT), lapse-rate tropopause altitude (LRH) and temperature (LRT) and the thickness of the tropical tropopause layer (TTL), that is defined as the layer between convective outflow level (COH) and CPH, obtained from GPS RO data. From all the TC events, we generate the mean cyclone-centred composite structure for the tropopause parameters and removed it from the climatological mean obtained from averaging the GPS RO data from 2002 to 2013. Since the TCs include eye, eye walls and deep convective bands, we obtained the tropopause parameters based on radial distance from the cyclone eye. In general, decrease in the CPH in the eye is noticed as expected. However, as the distance from the cyclone eye increases by 300, 400, and 500 km, an enhancement in CPH (CPT) and LRH (LRT) is observed. Lowering of CPH (0.6 km) and LRH (0.4 km) values with coldest CPT and LRT (2–3 K) within a 500 km radius of the TC centre is noticed. Higher (2 km) COH leading to the lowering of TTL thickness (2–3 km) is clearly observed. There are multiple tropopause structures in the profiles of temperature obtained within 100 km from the centre of the TC. These changes in the tropopause parameters are expected to influence the water vapour transport from the troposphere to the lower stratosphere, and ozone from the lower stratosphere to the upper troposphere, hence influencing STE processes.


Sign in / Sign up

Export Citation Format

Share Document