scholarly journals The Residual-Mean Circulation in the Tropical Tropopause Layer Driven by Tropical Waves

2014 ◽  
Vol 71 (4) ◽  
pp. 1305-1322 ◽  
Author(s):  
David A. Ortland ◽  
M. Joan Alexander

Abstract Latent heating estimates derived from rainfall observations are used to construct model experiments that isolate equatorial waves forced by tropical convection from midlatitude synoptic-scale waves. These experiments are used to demonstrate that quasi-stationary equatorial Rossby waves forced by latent heating drive most of the observed residual-mean upwelling across the tropopause transition layer within 15° of the equator. The seasonal variation of the equatorial waves and the mean meridional upwelling that they cause is examined for two full years from 2006 to 2007. Changes in equatorial Rossby wave propagation through seasonally varying mean winds are the primary mechanism for producing an annual variation in the residual-mean upwelling. In the tropical tropopause layer, averaged within 15° of the equator and between 90 and 190 hPa, the annual cycle varies between a maximum upwelling of 0.4 mm s−1 during boreal winter and spring and a minimum of 0.2 mm s−1 during boreal summer. This variability seems to be due to small changes in the mean wind speed in the tropics. Seasonal variations in latent heating have only a relatively minor effect on seasonal variations in tropical tropopause upwelling. In addition, Kelvin waves drive a small downward component of the total circulation over the equator that may be modulated by the quasi-biennial oscillation.

2009 ◽  
Vol 9 (5) ◽  
pp. 17937-17962
Author(s):  
P. Konopka ◽  
J.-U. Grooß ◽  
G. Günther ◽  
F. Plöger ◽  
R. Pommrich ◽  
...  

Abstract. Multi-annual simulations with the Chemical Model of the Stratosphere (CLaMS) are used to study the seasonality of O3 and of the mean age within the stratospheric part of the tropical tropopause layer (TTL) In agreement with satellite (HALOE) and in-situ observations (SHADOZ), CLaMS simulations show above ≈360 K potential temperature, a pronounced annual cycle in O3 and in the mean age of air with highest values in the late boreal summer. Within the model, this seasonality is driven by the seasonality of both upwelling and in-mixing. The latter process describes enhanced meridional transport from the extratropics into the TTL. The strongest in-mixing occurs from the Northern Hemisphere during the boreal summer in the potential temperature range between 380 and 420 K. Contrary, an increase of upwelling with highest values in winter reduces O3 up to the lowest values in early spring. Both, CLaMS simulations and Aura MLS O3 observations show that this enhanced equatorward transport in summer is mainly driven by the Asian monsoon anticyclone.


2011 ◽  
Vol 24 (11) ◽  
pp. 2728-2736 ◽  
Author(s):  
Hui Su ◽  
Jonathan H. Jiang ◽  
Xiaohong Liu ◽  
Joyce E. Penner ◽  
William G. Read ◽  
...  

Abstract Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent during boreal winter. Using the upper-tropospheric carbon monoxide measurements from the Aura Microwave Limb Sounder as a proxy of aerosols to classify ice clouds as polluted or clean, the authors find that polluted clouds have a smaller ice effective radius and a higher temperature and specific humidity near the tropopause than clean clouds. The increase in water vapor appears to be related to the increase in temperature, as a result of increased aerosols. Meteorological differences between the clouds cannot explain the differences in temperature and water vapor for the polluted and clean clouds. The authors hypothesize that aerosol semidirect radiative heating and/or changes in cirrus radiative heating, resulting from aerosol microphysical effects on clouds, may contribute to the increased TTL temperature and thus increased water vapor in the polluted clouds.


2021 ◽  
Vol 34 (2) ◽  
pp. 589-605
Author(s):  
Zane Martin ◽  
Adam Sobel ◽  
Amy Butler ◽  
Shuguang Wang

AbstractThe stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known.


2021 ◽  
Author(s):  
Kunihiko Kodera ◽  
Nawo Eguchi ◽  
Rei Ueyama ◽  
Beatriz Funatsu ◽  
Marco Gaetani ◽  
...  

<p>Previous studies have suggested that the recent increase in tropical extreme deep convection, in particular over Asia and Africa during the boreal summer, has occurred in association with a cooling in the tropical lower stratosphere. The present study is focused on the Sahel region of West Africa, where an increased occurrence of extreme precipitation events has been reported over recent decades. The results show that the changes since the 1980s involve a cooling trend in the tropical lower stratosphere and tropopause layer, combined with a warming in the troposphere. This feature is similar to that which might result from increased greenhouse gas levels. It is suggested that the decrease in the vertical temperature gradient in the tropical tropopause region enhances extreme deep convection where penetrating convection is frequent, whereas tropospheric warming suppresses the shallower convection. The essential feature of the recent changes over the tropics is therefore the depth of convection, rather than the total amount of surface precipitation. This could enhance cooling in the lower stratosphere through decrease in ozone concentration.</p><p> </p>


2019 ◽  
Vol 19 (4) ◽  
pp. 2655-2669 ◽  
Author(s):  
Kunihiko Kodera ◽  
Nawo Eguchi ◽  
Rei Ueyama ◽  
Yuhji Kuroda ◽  
Chiaki Kobayashi ◽  
...  

Abstract. Large changes in tropical circulation from the mid-to-late 1990s to the present, in particular changes related to the summer monsoon and cooling of the sea surface in the equatorial eastern Pacific, are noted. The cause of such recent decadal variations in the tropics was studied using a meteorological reanalysis dataset. Cooling of the equatorial southeastern Pacific Ocean occurred in association with enhanced cross-equatorial southerlies that were associated with a strengthening of the deep ascending branch of the boreal summer Hadley circulation over the continental sector connected to stratospheric circulation. From boreal summer to winter, the anomalous convective activity center moves southward following the seasonal march to the equatorial Indian Ocean–Maritime Continent region, which strengthens the surface easterlies over the equatorial central Pacific. Accordingly, ocean surface cooling extends over the equatorial central Pacific. We suggest that the fundamental cause of the recent decadal change in the tropical troposphere and the ocean is a poleward shift of convective activity that resulted from a strengthening of extreme deep convection penetrating into the tropical tropopause layer, particularly over the African and Asian continents and adjacent oceans. We conjecture that the increase in extreme deep convection is produced by a combination of land surface warming due to increased CO2 and a reduction of static stability in the tropical tropopause layer due to tropical stratospheric cooling.


2009 ◽  
Vol 22 (8) ◽  
pp. 2006-2022 ◽  
Author(s):  
Ping Liu ◽  
Yoshiyuki Kajikawa ◽  
Bin Wang ◽  
Akio Kitoh ◽  
Tetsuzo Yasunari ◽  
...  

Abstract This study documents the detailed characteristics of the tropical intraseasonal variability (TISV) in the MRI-20km60L AGCM that uses a variant of the Arakawa–Schubert cumulus parameterization. Mean states, power spectra, propagation features, leading EOF modes, horizontal and vertical structures, and seasonality associated with the TISV are analyzed. Results show that the model reproduces the mean states in winds realistically and in convection comparable to that of the observations. However, the simulated TISV is less realistic. It shows low amplitudes in convection and low-level winds in the 30–60-day band. Filtered anomalies have standing structures. Power spectra and lag correlation of the signals do not propagate dominantly either in the eastward direction during boreal winter or in the northward direction during boreal summer. A combined EOF (CEOF) analysis shows that winds and convection have a loose coupling that cannot sustain the simulated TISV as realistically as that observed. In the composited mature phase of the simulated MJO, the low-level convergence does not lead convection clearly so that the moisture anomalies do not tilt westward in the vertical, indicating that the low-level convergence does not favor the eastward propagation. The less realistic TISV suggests that the representation of cumulus convection needs to be improved in this model.


2019 ◽  
Vol 19 (23) ◽  
pp. 14621-14636 ◽  
Author(s):  
Xun Wang ◽  
Andrew E. Dessler ◽  
Mark R. Schoeberl ◽  
Wandi Yu ◽  
Tao Wang

Abstract. We use a forward Lagrangian trajectory model to diagnose mechanisms that produce the water vapor seasonal cycle observed by the Microwave Limb Sounder (MLS) and reproduced by the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) in the tropical tropopause layer (TTL). We confirm in both the MLS and GEOSCCM that the seasonal cycle of water vapor entering the stratosphere is primarily determined by the seasonal cycle of TTL temperatures. However, we find that the seasonal cycle of temperature predicts a smaller seasonal cycle of TTL water vapor between 10 and 40∘ N than observed by MLS or simulated by the GEOSCCM. Our analysis of the GEOSCCM shows that including evaporation of convective ice in the trajectory model increases both the simulated maximum value of the 100 hPa 10–40∘ N water vapor seasonal cycle and the seasonal-cycle amplitude. We conclude that the moistening effect from convective ice evaporation in the TTL plays a key role in regulating and maintaining the seasonal cycle of water vapor in the TTL. Most of the convective moistening in the 10–40∘ N range comes from convective ice evaporation occurring at the same latitudes. A small contribution to the moistening comes from convective ice evaporation occurring between 10∘ S and 10∘ N. Within the 10–40∘ N band, the Asian monsoon region is the most important region for convective moistening by ice evaporation during boreal summer and autumn.


2009 ◽  
Vol 9 (24) ◽  
pp. 9647-9660 ◽  
Author(s):  
C. Schiller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Plöger ◽  
F. H. Silva dos Santos ◽  
...  

Abstract. High-resolution water measurements from three tropical airborne missions in Northern Australia, Southern Brazil and West Africa in different seasons are analysed to study the transport and transformation of water in the tropical tropopause layer (TTL) and its impact on the stratosphere. The mean profiles are quite different according to the season and location of the campaigns, with lowest mixing ratios below 2 ppmv at the cold point tropopause during the Australian mission in November/December and high TTL mixing ratios during the African measurements in August. We present backward trajectory calculations considering freeze-drying of the air to the minimum saturation mixing ratio and initialised with climatological satellite data. This trajectory-based reconstruction of water agrees well with the observed H2O average profiles and therefore demonstrates that the water vapour set point in the TTL is primarily determined by the Lagrangian saturation history. Deep convection was found to moisten the TTL, in several events even above the cold point up to 420 K potential temperatures. However, our study does not provide evidence for a larger impact of these highly-localised events on global scales.


2017 ◽  
Vol 30 (18) ◽  
pp. 7339-7358 ◽  
Author(s):  
M. Jucker ◽  
E. P. Gerber

Abstract The processes regulating the climatology and annual cycle of the tropical tropopause layer (TTL) and cold point are not fully understood. Three main drivers have been identified: planetary-scale equatorial waves excited by tropical convection, planetary-scale extratropical waves associated with the deep Brewer–Dobson circulation, and synoptic-scale waves associated with the midlatitude storm tracks. In both observations and comprehensive atmospheric models, all three coexist, making it difficult to separate their contributions. Here, a new intermediate-complexity atmospheric model is developed. Simple modification of the model’s lower boundary allows detailed study of the three processes key to the TTL, both in isolation and together. The model shows that tropical planetary waves are most critical for regulating the mean TTL, setting the depth and temperature of the cold point. The annual cycle of the TTL, which is coldest (warmest) in boreal winter (summer), however, depends critically on the strong annual variation in baroclinicity of the Northern Hemisphere relative to that of the Southern Hemisphere. Planetary-scale waves excited from either the tropics or extratropics then double the impact of baroclinicity on the TTL annual cycle. The remarkably generic response of TTL temperatures over a range of configurations suggests that the details of the wave forcing are unimportant, provided there is sufficient variation in the upward extent of westerly winds over the annual cycle. Westerly winds enable the propagation of stationary Rossby waves, and weakening of the subtropical jet in boreal summer inhibits their propagation into the lower stratosphere, warming the TTL.


2015 ◽  
Vol 72 (9) ◽  
pp. 3309-3321 ◽  
Author(s):  
Malcolm J. King ◽  
Matthew C. Wheeler ◽  
Todd P. Lane

Abstract The seasonality, regionality, and nature of the association between tropical convection and the 5-day wavenumber-1 Rossby–Haurwitz wave are examined. Spectral coherences between daily outgoing longwave radiation (OLR), a proxy for convection, and 850-hPa zonal wind over the period January 1979–February 2013 are compared for different seasons and for phases of El Niño–Southern Oscillation (ENSO) and the quasi-biennial oscillation (QBO). Increased coherence, indicating a stronger association, occurs in boreal spring and autumn, with slightly reduced coherence in boreal summer and significantly reduced coherence in boreal winter. The regionality of the association is examined using lagged-regression techniques. Significant local signals in tropical convection are found over West Africa, the tropical Andes, the eastern Pacific Ocean, and the Marshall Islands. The relative phasing between the 5-day wave wind and OLR signals is in quadrature in Africa and the Marshall Islands, in phase with easterlies over the Andes, and out of phase with easterlies over the eastern Pacific. Frequency spectra of precipitation averaged over the identified local regions reveal spectral peaks in the 4–6-day range. The phasing between the large-scale wind and local convection signals suggests that the 5-day wave is actively modulating the convection around the Americas.


Sign in / Sign up

Export Citation Format

Share Document