A Closer Comparison of Early and Late-Winter Atmospheric Trends in the Northern Hemisphere

2005 ◽  
Vol 18 (16) ◽  
pp. 3204-3216 ◽  
Author(s):  
Yongyun Hu ◽  
Ka Kit Tung ◽  
Jiping Liu

Abstract Decadal trends are compared in various fields between Northern Hemisphere early winter, November–December (ND), and late-winter, February–March (FM), months using reanalysis data. It is found that in the extratropics and polar region the decadal trends display nearly opposite tendencies between ND and FM during the period from 1979 to 2003. Dynamical trends in late winter (FM) reveal that the polar vortex has become stronger and much colder and wave fluxes from the troposphere to the stratosphere are weaker, consistent with the positive trend of the Arctic Oscillation (AO) as found in earlier studies, while trends in ND appear to resemble a trend toward the low-index polarity of the AO. In the Tropics, the Hadley circulation shows significant intensification in both ND and FM, with stronger intensification in FM. Unlike the Hadley cell, the Ferrel cell shows opposite trends between ND and FM, with weakening in ND and strengthening in FM. Comparison of the observational results with general circulation model simulations is also discussed.

2010 ◽  
Vol 10 (7) ◽  
pp. 3427-3442 ◽  
Author(s):  
M. Schneider ◽  
K. Yoshimura ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We present tropospheric H216O and HD16O/H216O vapour profiles measured by ground-based FTIR (Fourier Transform Infrared) spectrometers between 1996 and 2008 at a northern hemispheric subarctic and subtropical site (Kiruna, Northern Sweden, 68° N and Izaña, Tenerife Island, 28° N, respectively). We compare these measurements to an isotope incorporated atmospheric general circulation model (AGCM). If the model is nudged towards meteorological fields of reanalysis data the agreement is very satisfactory on time scales ranging from daily to inter-annual. Taking the Izaña and Kiruna measurements as an example we document the FTIR network's unique potential for investigating the atmospheric water cycle. At the subarctic site we find strong correlations between the FTIR data, on the one hand, and the Arctic Oscillation index and the northern Atlantic sea surface temperature, on the other hand. The Izaña FTIR measurements reveal the importance of the Hadley circulation and the Northern Atlantic Oscillation index for the subtropical middle/upper tropospheric water balance. We document where the AGCM is able to capture these complexities of the water cycle and where it fails.


Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2019 ◽  
Vol 76 (6) ◽  
pp. 1547-1564 ◽  
Author(s):  
Spencer A. Hill ◽  
Simona Bordoni ◽  
Jonathan L. Mitchell

Abstract We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum satisfies or or where the RCE absolute vorticity satisfies ; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude , which needs not equal the RCE forcing maximum latitude . Whatever the value of , we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts , always placing it poleward of . As is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both and become increasingly displaced poleward of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing.


2012 ◽  
Vol 25 (8) ◽  
pp. 2979-2994 ◽  
Author(s):  
Jian Ma ◽  
Shang-Ping Xie ◽  
Yu Kosaka

Abstract The annual-mean tropospheric circulation change in global warming is studied by comparing the response of an atmospheric general circulation model (GCM) to a spatial-uniform sea surface temperature (SST) increase (SUSI) with the response of a coupled ocean–atmosphere GCM to increased greenhouse gas concentrations following the A1B scenario. In both simulations, tropospheric warming follows the moist adiabat in the tropics, and static stability increases globally in response to SST warming. A diagnostic framework is developed based on a linear baroclinic model (LBM) of the atmosphere. The mean advection of stratification change (MASC) by climatological vertical motion, often neglected in interannual variability, is an important thermodynamic term for global warming. Once MASC effect is included, LBM shows skills in reproducing GCM results by prescribing latent heating diagnosed from the GCMs. MASC acts to slow down the tropical circulation. This is most clear in the SUSI run where the Walker circulation slows down over the Pacific without any change in SST gradient. MASC is used to decelerate the Hadley circulation, but spatial patterns of SST warming play an important role. Specifically, the SST warming is greater in the Northern than Southern Hemisphere, an interhemispheric asymmetry that decelerates the Hadley cell north, but accelerates it south of the equator. The MASC and SST-pattern effects are on the same order of magnitude in our LBM simulations. The former is presumably comparable across GCMs, while SST warming patterns show variations among models in both shape and magnitude. Uncertainties in SST patterns account for intermodel variability in Hadley circulation response to global warming (especially on and south of the equator).


Author(s):  
Akira Yamazaki ◽  
Takemasa Miyoshi ◽  
Jun Inoue ◽  
Takeshi Enomoto ◽  
Nobumasa Komori

AbstractAn ensemble-based forecast sensitivity to observations (EFSO) diagnosis has been implemented in an atmospheric general circulation model–ensemble Kalman filter data assimilation system to estimate the impacts of specific observations from the quasi-operational global observing system on weekly short-range forecasts. It was examined whether EFSO reasonably approximates the impacts of a subset of observations from specific geographical locations for 6-hour forecasts, and how long the 6-hour observation impacts can be retained during the 7-day forecast period. The reference for these forecasts was obtained from 12 data denial experiments in each of which a subset of three radiosonde observations launched from a geographical location was excluded. The 12 locations were selected from three latitudinal bands comprising (i) four Arctic regions, (ii) four midlatitude regions in the Northern Hemisphere, and (iii) four tropical regions during the Northern Hemisphere winter of 2015/16. The estimated winter-averaged EFSO-derived observation impacts well corresponded to the 6-hour observation impacts obtained by the data denials and EFSO could reasonably estimate the observation impacts by the data denials on short-range (6-hour to 2-day) forecasts. Furthermore, during the medium-range (4-day to 7-day) forecasts, it was found that the Arctic observations tend to seed the broadest impacts and their short-range observation impacts could be projected to beneficial impacts in Arctic and midlatitude North American areas. The midlatitude area located just downstream of dynamical propagation from the Arctic toward the midlatitudes. Results obtained by repeated Arctic data-denial experiments were found to be generally common to those from the non-repeated experiments.


2012 ◽  
Vol 25 (12) ◽  
pp. 4097-4115 ◽  
Author(s):  
Shuguang Wang ◽  
Edwin P. Gerber ◽  
Lorenzo M. Polvani

Abstract The circulation response of the atmosphere to climate change–like thermal forcing is explored with a relatively simple, stratosphere-resolving general circulation model. The model is forced with highly idealized physics, but integrates the primitive equations at resolution comparable to comprehensive climate models. An imposed forcing mimics the warming induced by greenhouse gasses in the low-latitude upper troposphere. The forcing amplitude is progressively increased over a range comparable in magnitude to the warming projected by Intergovernmental Panel on Climate Change coupled climate model scenarios. For weak to moderate warming, the circulation response is remarkably similar to that found in comprehensive models: the Hadley cell widens and weakens, the tropospheric midlatitude jets shift poleward, and the Brewer–Dobson circulation (BDC) increases. However, when the warming of the tropical upper troposphere exceeds a critical threshold, ~5 K, an abrupt change of the atmospheric circulation is observed. In the troposphere the extratropical eddy-driven jet jumps poleward nearly 10°. In the stratosphere the polar vortex intensifies and the BDC weakens as the intraseasonal coupling between the troposphere and the stratosphere shuts down. The key result of this study is that an abrupt climate transition can be effected by changes in atmospheric dynamics alone, without need for the strong nonlinearities typically associated with physical parameterizations. It is verified that the abrupt climate shift reported here is not an artifact of the model’s resolution or numerics.


2012 ◽  
Vol 25 (2) ◽  
pp. 592-607 ◽  
Author(s):  
Y. Peings ◽  
D. Saint-Martin ◽  
H. Douville

Abstract The climate version of the general circulation model Action de Recherche Petite Echelle Grande Echelle (ARPEGE-Climat) is used to explore the relationship between the autumn Siberian snow and the subsequent winter northern annular mode by imposing snow anomalies over Siberia. As the model presents some biases in the representation of the polar vortex, a nudging methodology is used to obtain a more realistic but still interactive extratropical stratosphere in the model. Free and nudged sensitivity experiments are compared to discuss the dependence of the results on the northern stratosphere climatology. For each experiment, a positive snow mass anomaly imposed from October to March over Siberia leads to significant impacts on the winter atmospheric circulation in the extratropics. In line with previous studies, the model response resembles the negative phase of the Arctic Oscillation. The well-documented stratospheric pathway between snow and the Arctic Oscillation operates in the nudged experiment, while a more zonal propagation of the signal is found in the free experiment. Thus, the study provides two main findings: it supports the influence of Siberian snow on the winter extratropical circulation and highlights the importance of the northern stratosphere representation in the models to capture this teleconnection. These findings could have important implications for seasonal forecasting, as most of the operational models present biases similar to those of the ARPEGE-Climat model.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 582
Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2017. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2016 ◽  
Vol 29 (6) ◽  
pp. 2041-2058 ◽  
Author(s):  
Yutian Wu ◽  
Karen L. Smith

Abstract This study examines the Northern Hemisphere midlatitude circulation response to Arctic amplification (AA) in a simple atmospheric general circulation model. It is found that, in response to AA, the tropospheric jet shifts equatorward and the stratospheric polar vortex weakens, robustly for various AA forcing strengths. Despite this, no statistically significant change in the frequency of sudden stratospheric warming events is identified. In addition, in order to quantitatively assess the role of stratosphere–troposphere coupling, the tropospheric pathway is isolated by nudging the stratospheric zonal mean state toward the reference state. When the nudging is applied, rendering the stratosphere inactive, the tropospheric jet still shifts equatorward but by approximately half the magnitude compared to that of an active stratosphere. The difference represents the stratospheric pathway and the downward influence of the stratosphere on the troposphere. This suggests that stratosphere–troposphere coupling plays a nonnegligible role in establishing the midlatitude circulation response to AA.


1995 ◽  
Vol 43 (2) ◽  
pp. 174-184 ◽  
Author(s):  
Sandy P. Harrison ◽  
John E. Kutzbach ◽  
I. Colin Prentice ◽  
Pat J. Behling ◽  
Martin T. Sykes

AbstractThe last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord.


Sign in / Sign up

Export Citation Format

Share Document