scholarly journals Estimation of the Impact of Sampling Errors in the VOS Observations on Air–Sea Fluxes. Part I: Uncertainties in Climate Means

2007 ◽  
Vol 20 (2) ◽  
pp. 279-301 ◽  
Author(s):  
Sergey Gulev ◽  
Thomas Jung ◽  
Eberhard Ruprecht

Abstract Sampling uncertainties in the voluntary observing ship (VOS)-based global ocean–atmosphere flux fields were estimated using the NCEP–NCAR reanalysis and ECMWF 40-yr Re-Analysis (ERA-40) as well as seasonal forecasts without data assimilation. Air–sea fluxes were computed from 6-hourly reanalyzed individual variables using state-of-the-art bulk formulas. Individual variables and computed fluxes were subsampled to simulate VOS-like sampling density. Random simulation of the number of VOS observations and simulation of the number of observations with contemporaneous sampling allowed for estimation of random and total sampling uncertainties respectively. Although reanalyses are dependent on VOS, constituting an important part of data assimilation input, it is assumed that the reanalysis fields adequately reproduce synoptic variability at the sea surface. Sampling errors were quantified by comparison of the regularly sampled (i.e., 6 hourly) and subsampled monthly fields of surface variables and fluxes. In poorly sampled regions random sampling errors amount to 2.5°–3°C for air temperature, 3 m s−1 for the wind speed, 2–2.5 g kg−1 for specific humidity, and 15%–20% of the total cloud cover. The highest random sampling errors in surface fluxes were found for the sensible and latent heat flux and range from 30 to 80 W m−2. Total sampling errors in poorly sampled areas may be higher than random ones by 60%. In poorly sampled subpolar latitudes of the Northern Hemisphere and throughout much of the Southern Ocean the total sampling uncertainty in the net heat flux can amount to 80–100 W m−2. The highest values of the uncertainties associated with the interpolation/extrapolation into unsampled grid boxes are found in subpolar latitudes of both hemispheres for the turbulent fluxes, where they can be comparable with the sampling errors. Simple dependencies of the sampling errors on the number of samples and the magnitude of synoptic variability were derived. Sampling errors estimated from different reanalyses and from seasonal forecasts yield qualitatively comparable spatial patterns, in which the actual values of uncertainties are controlled by the magnitudes of synoptic variability. Finally, estimates of sampling uncertainties are compared with the other errors in air–sea fluxes and the reliability of the estimates obtained is discussed.

2019 ◽  
Vol 12 (9) ◽  
pp. 3939-3954
Author(s):  
Frederik Kurzrock ◽  
Hannah Nguyen ◽  
Jerome Sauer ◽  
Fabrice Chane Ming ◽  
Sylvain Cros ◽  
...  

Abstract. Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in midlatitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days are still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure and on the impact of this method on short-term forecasts of GHI for Réunion Island, a tropical island in the southwest Indian Ocean. The multilayer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) Manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated, and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and middle troposphere. Ground-based GHI observations at 12 sites on Réunion Island are used to quantify the impact of CWP DA. Over a total of 44 d during austral summertime, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 h. Root mean square error and mean absolute error are reduced by 4 % and 3 %, respectively.


2020 ◽  
Vol 20 (2) ◽  
pp. 152-167
Author(s):  
Sebastian Gnat

Abstract Research background: Mass valuation is a process in which many properties are valued simultaneously with a uniform approach. An example of a procedure used for mass real estate valuation is the Szczecin Algorithm of Real Estate Mass Appraisal (SAREMA), which can be developed into a multiple regression model. The algorithm is based on a set of drawn representative properties. This set determines, inter alia, the quality of obtained valuations. Purpose: The objective of the study is to verify the hypothesis whether changing the method of sampling representative properties from the originally used simple random sampling to stratified sampling improves the results of the SAREMA econometric variant. Research methodology: The article presents a study that uses two methods of representative properties sampling – simple random sampling and stratified sampling. Errors of the models of valuation created taking into account both methods of sampling and different number of representative properties are compared. A key aspect of the survey is the choice of a better sampling method. Results: The study has shown that stratified sampling improves valuation results and, more specifically, allows for lower root mean square errors. Stratified sampling yielded better results in the initial phase of the study with more observations, but reducing the percentage of strata participating in the draws, despite the increase in RMSE, guaranteed lower errors than the corresponding results based on simple sampling in all variants of the study. Novelty: The article confirms the possibility of improving the results of mass property valuation by changing the scheme of representative properties sampling. The results allowed for the conclusion that stratified sampling is a better way of creating a set of representative properties.


2019 ◽  
Vol 147 (3) ◽  
pp. 809-839 ◽  
Author(s):  
Xin Li ◽  
Xiaolei Zou ◽  
Mingjian Zeng

Bias correction (BC) is a crucial step for satellite radiance data assimilation (DA). In this study, the traditional airmass BC scheme in the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) is investigated for Cross-track Infrared Sounder (CrIS) DA. The ability of the airmass predictors to model CrIS biases is diagnosed. Correlations between CrIS observation-minus-background ( O − B) samples and the two lapse rate–related airmass predictors employed by GSI are found to be very weak, indicating that the bias correction contributed by the airmass BC scheme is small. A modified BC scheme, which directly calculates the moving average of O − B departures from data of the previous 2 weeks with respect to scan position and latitudinal band, is proposed and tested. The impact of the modified BC scheme on CrIS radiance DA is compared with the variational airmass BC scheme. Results from 1-month analysis/forecast experiments show that the modified BC scheme removes nearly all scan-dependent and latitude-dependent biases, while residual biases are still found in some channels when the airmass BC scheme is applied. Smaller predicted root-mean-square errors of temperature and specific humidity and higher equivalent threat scores are obtained by the DA experiment using the modified BC scheme. If O − B samples are replaced by observation-minus-analysis ( O − A) samples for bias estimates in the modified BC scheme, the forecast impacts are reduced but remain positive. A convective precipitation case that occurred on 21 August 2016 is investigated. Using the modified BC scheme, the atmospheric temperature structure and the geopotential height structures near trough/ridge areas are better resolved, resulting in better precipitation forecasts.


2019 ◽  
Vol 148 (3) ◽  
pp. 1229-1249 ◽  
Author(s):  
Tobias Necker ◽  
Martin Weissmann ◽  
Yvonne Ruckstuhl ◽  
Jeffrey Anderson ◽  
Takemasa Miyoshi

Abstract State-of-the-art ensemble prediction systems usually provide ensembles with only 20–250 members for estimating the uncertainty of the forecast and its spatial and spatiotemporal covariance. Given that the degrees of freedom of atmospheric models are several magnitudes higher, the estimates are therefore substantially affected by sampling errors. For error covariances, spurious correlations lead to random sampling errors, but also a systematic overestimation of the correlation. A common approach to mitigate the impact of sampling errors for data assimilation is to localize correlations. However, this is a challenging task given that physical correlations in the atmosphere can extend over long distances. Besides data assimilation, sampling errors pose an issue for the investigation of spatiotemporal correlations using ensemble sensitivity analysis. Our study evaluates a statistical approach for correcting sampling errors. The applied sampling error correction is a lookup table–based approach and therefore computationally very efficient. We show that this approach substantially improves both the estimates of spatial correlations for data assimilation as well as spatiotemporal correlations for ensemble sensitivity analysis. The evaluation is performed using the first convective-scale 1000-member ensemble simulation for central Europe. Correlations of the 1000-member ensemble forecast serve as truth to assess the performance of the sampling error correction for smaller subsets of the full ensemble. The sampling error correction strongly reduced both random and systematic errors for all evaluated variables, ensemble sizes, and lead times.


2018 ◽  
Author(s):  
Benoît Tranchant ◽  
Elisabeth Remy ◽  
Eric Greiner ◽  
Olivier Legalloudec

Abstract. Monitoring Sea Surface Salinity (SSS) is important for understanding and forecasting the ocean circulation. It is even crucial in the context of the acceleration of the water cycle. Until recently, SSS was one of the less observed essential ocean variables. Only sparse in situ observations, most often closer to 5 meters deep than the surface, were available to estimate the SSS. The recent satellite missions of ESA's SMOS, NASA's Aquarius, and now SMAP have made possible for the first time to measure SSS from space. The SSS drivers can be quite different than the temperature ones. The model SSS can suffer from significant errors coming not only from the ocean dynamical model but also the atmospheric precipitation and evaporation as well as ice melting and river runoff. Satellite SSS can bring a valuable additional constraint to control the model salinity. In the framework of the SMOS Nino 2015 ESA project (https://www.godae-oceanview.org/projects/smos-nino15/), the impact of satellite SSS data assimilation is assessed with the Met Office and Mercator Ocean global ocean analysis and forecasting systems with a focus on the Tropical Pacific region. This article presents the analysis of an Observing System Experiment (OSE) conducted with the 1/4° resolution Mercator Ocean analysis and forecasting system. SSS data assimilation constrains the model SSS to be closer to the observations in a coherent way with the other data sets already routinely assimilated in an operational context. Globally, the SMOS SSS assimilation has a positive impact in salinity over the top 30 meters. Comparisons to independent data sets show a small but positive impact. The sea surface height (SSH) has also been impacted by implying a reinforcement of TIWs during the El-Niño 2015/16 event. Finally, this study helped us to progress in the understanding of the biases and errors that can degrade the SMOS SSS performance.


2010 ◽  
Vol 27 (3) ◽  
pp. 528-546 ◽  
Author(s):  
Robert W. Helber ◽  
Jay F. Shriver ◽  
Charlie N. Barron ◽  
Ole Martin Smedstad

Abstract The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies. The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpolates satellite SSHA track data measured from space to produce high-resolution (eddy resolving) fields. The Modular Ocean Data Assimilation System (MODAS) uses the NLOM SSHA to produce synthetic three-dimensional fields of temperature and salinity over the global ocean. A series of case studies is defined where NLOM assimilates different combinations of data streams from zero to three altimeters. The resulting NLOM SSHA fields and the MODAS synthetic profiles are evaluated relative to independently observed ocean temperature and salinity profiles for the years 2001–03. The NLOM SSHA values are compared with the difference of the observed dynamic height from the climatological dynamic height. The synthetics are compared with observations using a measure of thermocline depth. Comparisons are done point for point and for 1° radius regions that are linearly fit over 2-month periods. To evaluate the impact of data outliers, statistical evaluations are done with traditional Gaussian statistics and also with robust nonparametric statistics. Significant error reduction is obtained, particularly in high SSHA variability regions, by including at least one altimeter. Given the limitation of these methods, the overall differences between one and three altimeters are significant only in bias. Data outliers increase Gaussian statistical error and error uncertainty compared to the same computations using nonparametric statistical methods.


2015 ◽  
Vol 12 (3) ◽  
pp. 1145-1186 ◽  
Author(s):  
V. Turpin ◽  
E. Remy ◽  
P. Y. Le Traon

Abstract. Observing System Experiments (OSEs) are carried out over a one-year period to quantify the impact of Argo observations on the Mercator-Ocean 1/4° global ocean analysis and forecasting system. The reference simulation assimilates sea surface temperature (SST), SSALTO/DUACS altimeter data and Argo and other in situ observations from the Coriolis data center. Two other simulations are carried out where all Argo and half of Argo data sets are withheld. Assimilating Argo observations has a significant impact on analyzed and forecast temperature and salinity fields at different depths. Without Argo data assimilation, large errors occur in analyzed fields as estimated from the differences when compared with in situ observations. For example, in the 0–300 m layer RMS differences between analyzed fields and observations reach 0.25 psu and 1.25 °C in the western boundary currents and 0.1 psu and 0.75 °C in the open ocean. The impact of the Argo data in reducing observation-model forecast error is also significant from the surface down to a depth of 2000 m. Differences between independent observations and forecast fields are thus reduced by 20 % in the upper layers and by up to 40 % at a depth of 2000 m when Argo data are assimilated. At depth, the most impacted regions in the global ocean are the Mediterranean outflow and the Labrador Sea. A significant degradation can be observed when only half of the data are assimilated. All Argo observations thus matter, even with a 1/4° model resolution. The main conclusion is that the performance of global data assimilation systems is heavily dependent on the availability of Argo data.


2019 ◽  
Author(s):  
Frederik Kurzrock ◽  
Hannah Nguyen ◽  
Jerome Sauer ◽  
Fabrice Chane Ming ◽  
Sylvain Cros ◽  
...  

Abstract. Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in mid-latitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days is still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure, and on the impact of this method on short-term forecasts of GHI for Reunion Island, a tropical island in the South-West Indian Ocean. The multi-layer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and mid troposphere. Ground-based GHI observations at 12 sites on Reunion Island are used to quantify the impact of CWP DA. Over a total of 44 days during austral summer time, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 hours. Root Mean Squared Error and Mean Absolute Error are reduced by 4 % and 3 % respectively.


2009 ◽  
Vol 26 (3) ◽  
pp. 538-555 ◽  
Author(s):  
Sergey Skachko ◽  
Jean-Michel Brankart ◽  
Frédéric Castruccio ◽  
Pierre Brasseur ◽  
Jacques Verron

Abstract Bulk formulations parameterizing turbulent air–sea fluxes remain among the main sources of error in present-day ocean models. The objective of this study is to investigate the possibility of estimating the turbulent bulk exchange coefficients using sequential data assimilation. It is expected that existing ocean assimilation systems can use this method to improve the air–sea fluxes and produce more realistic forecasts of the thermohaline characteristics of the mixed layer. The method involves augmenting the control vector of the assimilation scheme using the model parameters that are to be controlled. The focus of this research is on estimating two bulk coefficients that drive the sensible heat flux, the latent heat flux, and the evaporation flux of a global ocean model, by assimilating temperature and salinity profiles using horizontal and temporal samplings similar to those to be provided by the Argo float system. The results of twin experiments show that the method is able to correctly estimate the large-scale variations in the bulk parameters, leading to a significant improvement in the atmospheric forcing applied to the ocean model.


2007 ◽  
Vol 46 (6) ◽  
pp. 714-725 ◽  
Author(s):  
Louis Garand ◽  
Sylvain Heilliette ◽  
Mark Buehner

Abstract The interchannel observation error correlation (IOEC) associated with radiance observations is currently assumed to be zero in meteorological data assimilation systems. This assumption may lead to suboptimal analyses. Here, the IOEC is inferred for the Atmospheric Infrared Radiance Sounder (AIRS) hyperspectral radiance observations using a subset of 123 channels covering the spectral range of 4.1–15.3 μm. Observed minus calculated radiances are computed for a 1-week period using a 6-h forecast as atmospheric background state. A well-established technique is used to separate the observation and background error components for each individual channel and each channel pair. The large number of collocations combined with the 40-km horizontal spacing between AIRS fields of view allows robust results to be obtained. The resulting background errors are in good agreement with those inferred from the background error matrix used operationally in data assimilation at the Meteorological Service of Canada. The IOEC is in general high among the water vapor–sensing channels in the 6.2–7.2-μm region and among surface-sensitive channels. In contrast, it is negligible for channels within the main carbon dioxide absorption band (13.2–15.4 μm). The impact of incorporating the IOEC is evaluated from 1D variational retrievals at 381 clear-sky oceanic locations. Temperature increments differ on average by 0.25 K, and ln(q) increments by 0.10, where q is specific humidity. Without IOEC, the weight given to the observations appears to be too high; the assimilation attempts to fit the observations nearly perfectly. The IOEC better constrains the variational assimilation process, and the rate of convergence is systematically faster by a factor of 2.


Sign in / Sign up

Export Citation Format

Share Document