scholarly journals Explorations of the Annual Mean Heat Budget of the Tropical Indian Ocean. Part II: Studies with a Simplified Ocean General Circulation Model

2007 ◽  
Vol 20 (13) ◽  
pp. 3229-3248 ◽  
Author(s):  
Rui-Jin Hu ◽  
J. Stuart Godfrey

Abstract Present-day OGCMs give low values of annual mean net heat flux (AMNHF) in the tropical Indian Ocean, compared to climatologies. AMNHF generation is examined in an open-boundary model of this region with realistic coastlines. In the first two of three experiments only annual mean wind stresses were applied so that a modified form of the “minimum depth criterion” of the previous paper would be applicable. Area-integrated AMNHF was well below observed values, despite the fact that western boundary inflow was substantially deeper and colder than was expected from the modified minimum depth estimate. The model showed large “spikes” in the gradient of “depth-integrated steric height” (DISH) along the western boundary, coinciding with coastline steps (which were absent in the previous paper). Most diapycnal entrainment occurred next to the coast, near these steps. In a third experiment a seasonal cycle of wind stress was added to the same annual mean. Annual mean diapycnal mixing and entrainment increased and the western boundary inflow deepened, resulting in substantially greater AMNHF for the same annual mean Ekman transports. However, area-integrated AMNHF was still well below the mean of directly observed surface fluxes. The recirculation around the “Great Whirl” doubled, permitting more cold water crossing the equator in one year to mix with recirculated water generated in a previous year. Entrainment up to the surface thus went by stages, over more than one year. The increased Great Whirl was related to stronger annual mean curls of nonlinear terms in the momentum equation, while the deeper entrainment was caused by stronger annual mean diapycnal mixing. In all experiments, diapycnal mixing was primarily due to the “flux corrected transport” (FCT) advective scheme, which in effect replaces spurious convective overturn by numerical diffusion. More research is needed to solve such problems, but sensitivity of AMNHF in OGCMs to time-varying forcing—due to seasonal, intraseasonal, or baroclinic instability—may offer a new source of climate predictability.

2007 ◽  
Vol 20 (13) ◽  
pp. 3210-3228 ◽  
Author(s):  
J. Stuart Godfrey ◽  
Rui-Jin Hu ◽  
Andreas Schiller ◽  
R. Fiedler

Abstract Annual mean net heat fluxes from ocean general circulation models (OGCMs) are systematically too low in the tropical Indian Ocean, compared to observations. In the models, only some of the geostrophic inflow replacing southward Ekman outflow is colder than the minimum sea surface temperature (MINSST). Observed heat fluxes imply that much more inflow is colder than MINSST. Since inflow below MINSST can only join the surface Ekman transport after diathermal warming, the OGCMs must underestimate diathermal effects. A crude analog of the annual mean Indian Ocean heat budget was generated, using a rectangular box model with a deep “Indo–Pacific” gap at 7°–10°S in its eastern side. Wind stress was zonal and proportional to the Coriolis parameter, so Ekman transport was spatially constant and equaled Sverdrup transport. For three experiments, zonally integrated Ekman transport was steady and southward at 10 Sv (Sv ≡ 106 m3 s−1). In steady state, a 10 Sv “Indonesian Throughflow” fed a northward western boundary current of 10 Sv, which turned eastward along the northern boundary at 10°N to feed the southward Ekman transport. Most diathermal mixing occurred within an intense eddy in the northwest corner. Some of the geostrophic inflow was at temperatures colder than MINSST (found at the northeast corner of the eddy); it must warm to MINSST via diathermal mixing. Northern boundary upwelling exceeded the 10-Sv Ekman transport. The excess warms as it recirculates around the eddy, apparently supplying the heat to warm inflow below MINSST. In an experiment using the “flux-corrected transport” (FCT) scheme, diathermal mixing occurred in the strongly sheared currents around the eddy. However the Richardson number never became low enough to drive strong diathermal mixing, perhaps because (like that of other published models) the present model’s vertical resolution was too coarse. In three experiments, the dominant mixing was caused by horizontal diffusion, spurious convective overturn, and numerical mixing invoked by the FCT scheme, respectively. All three mixing mechanisms are physically suspect; such model problems (if widespread) must be resolved before the mismatch between observed and modeled heat fluxes can be addressed. However, the fact that the density profile at the western boundary must be hydrostatically stable places a lower limit on the area-integrated heat fluxes. Results from the three main experiments—and from many published OGCMs—are quite close to this lower limit.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


2021 ◽  
Author(s):  
Vinu Valsala

Abstract Per unit area of the tropical Indian Ocean receives the world’s largest tropical ocean rain and river runoff (RRW). The 3-dimensional spreading of RRW entering the tropical Indian Ocean and associated salinity and circulation anomalies are explored for 60 years using ocean reanalysis data tailored to a tracer transport model. Over 60 years, the cumulative impact of RRW entering the tropical Indian Ocean is to freshen the Indian Ocean basin as large as 2-0.1 p.s.u from the surface to 500m. The RRW has propagated to a vast extent of the Atlantic and Pacific Oceans via general circulation pathways. A quasi-equilibrium model of accumulation of RRW over the tropical Indian Ocean suggests that it induces clockwise geostrophic currents from the Bay of Bengal to the Arabian Sea over 0-500m depths, a net inter-basin transport tendency of 0.8±0.14 Sv year-1. The study implies that coupled climate models with apparent precipitation biases may miscalculate such salinity and circulation anomalies due to RRW and aggravating biases in simulated climate dynamics.


2005 ◽  
Vol 35 (7) ◽  
pp. 1206-1222 ◽  
Author(s):  
Yann Friocourt ◽  
Sybren Drijfhout ◽  
Bruno Blanke ◽  
Sabrina Speich

Abstract The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.


2011 ◽  
Vol 24 (14) ◽  
pp. 3718-3733 ◽  
Author(s):  
Mxolisi E. Shongwe ◽  
Geert Jan van Oldenborgh ◽  
Bart van den Hurk ◽  
Maarten van Aalst

Abstract Probable changes in mean and extreme precipitation in East Africa are estimated from general circulation models (GCMs) prepared for the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4). Bayesian statistics are used to derive the relative weights assigned to each member in the multimodel ensemble. There is substantial evidence in support of a positive shift of the whole rainfall distribution in East Africa during the wet seasons. The models give indications for an increase in mean precipitation rates and intensity of high rainfall events but for less severe droughts. Upward precipitation trends are projected from early this (twenty first) century. As in the observations, a statistically significant link between sea surface temperature gradients in the tropical Indian Ocean and short rains (October–December) in East Africa is simulated in the GCMs. Furthermore, most models project a differential warming of the Indian Ocean during boreal autumn. This is favorable for an increase in the probability of positive Indian Ocean zonal mode events, which have been associated with anomalously strong short rains in East Africa. On top of the general increase in rainfall in the tropics due to thermodynamic effects, a change in the structure of the Eastern Hemisphere Walker circulation is consistent with an increase in East Africa precipitation relative to other regions within the same latitudinal belt. A notable feature of this change is a weakening of the climatological subsidence over eastern Kenya. East Africa is shown to be a region in which a coherent projection of future precipitation change can be made, supported by physical arguments. Although the rate of change is still uncertain, almost all results point to a wetter climate with more intense wet seasons and less severe droughts.


2014 ◽  
Vol 27 (18) ◽  
pp. 7086-7101 ◽  
Author(s):  
Zongting Gao ◽  
Zeng-Zhen Hu ◽  
Jieshun Zhu ◽  
Song Yang ◽  
Rong-Hua Zhang ◽  
...  

Abstract In this work, the variability of summer [June–August (JJA)] rainfall in northeast China is examined and its predictors are identified based on observational analyses and atmospheric modeling experiments. At interannual time scales, the summer rainfall anomaly in northeast China is significantly correlated with the rainfall anomaly over the Huang-Huai region (32°–38°N, 105°–120°E) in late spring (April–May). Compared with climatology, an earlier (later) rainy season in the Huang-Huai region favors a wet (dry) summer in northeast China. Also, this connection has strengthened since the late 1970s. In addition to the impact of the sea surface temperature anomaly (SSTA) in the tropical Indian Ocean, the local soil moisture anomalies caused by the rainfall anomaly in the Huang-Huai region in late spring generate summer general circulation anomalies, which contribute to the rainfall anomaly in northeast China. As a result, when compared with the SSTA, the rainfall anomaly in the Huang-Huai region in late spring can be used as another and even better predictor for the summer rainfall anomaly in northeast China. The results from atmospheric general circulation model experiments forced by observed SST confirm the diagnostic results to some extent, including the connection of the rainfall anomaly between the Huang-Huai region in April–May and northeastern China in JJA as well as the influence from SSTA in the tropical Indian Ocean. It is shown that eliminating the internal dynamical processes by using the ensemble mean intensifies the connection, implying that the connection of rainfall variation in the two different seasons/regions may be partially caused by the external forcing (e.g., SSTA in the tropical Indian Ocean).


2009 ◽  
Vol 22 (18) ◽  
pp. 4930-4938 ◽  
Author(s):  
Dietmar Dommenget ◽  
Malte Jansen

Abstract Several recent general circulation model studies discuss the predictability of the Indian Ocean dipole (IOD) mode, suggesting that it is predictable because of coupled ocean–atmosphere interactions in the Indian Ocean. However, it is not clear from these studies how much of the predictability is due to the response to El Niño. It is shown in this note that a simple statistical model that treats the Indian Ocean as a red noise process forced by tropical Pacific SST shows forecast skills comparable to those of recent general circulation model studies. The results also indicate that some of the eastern tropical Indian Ocean SST predictability in recent studies may indeed be beyond the skill of the simple model proposed in this note, indicating that dynamics in the Indian Ocean may have caused this improved predictability in this region. The model further indicates that the IOD index may be the least predictable index of Indian Ocean SST variability. The model is proposed as a null hypothesis for Indian Ocean SST predictions.


2021 ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu-Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

<p>Using the Gauss–Markov decomposition method, this study investigates the mean structure and seasonal variation of the tropical gyre in the Indian Ocean based on the observations of surface drifters. In the climatological mean, the clockwise tropical gyre consists of the equatorial Wyrtki Jets (WJs), the South Equatorial Current (SEC), and the eastern and western boundary currents. This gyre system redistributes the water mass over the entire tropical Indian Ocean basin. Its variations are associated with the monsoon transitions, featuring a typical clockwise pattern in the boreal spring and fall seasons. The relative importance of the geostrophic and Ekman components of the surface currents as well as the role of eddy activity were further examined. It was found that the geostrophic component dominates the overall features of the tropical gyre, including the SEC meandering, the broad eastern boundary current, and the axes of the WJs in boreal spring and fall, whereas the Ekman component strengthens the intensity of the WJs and SEC. Eddies are active over the southeastern tropical Indian Ocean and transport a warm and fresh water mass westward, with direct impact on the southern branch of the tropical gyre. In particular, the trajectories of drifters reveal that during strong Indian Ocean Dipole or El Niño-Southern Oscillation events, long-lived eddies were able to reach the southwestern Indian Ocean with a moving speed close to that of the first baroclinic Rossby waves.</p>


2010 ◽  
Vol 23 (24) ◽  
pp. 6542-6554 ◽  
Author(s):  
Rashmi Sharma ◽  
Neeraj Agarwal ◽  
Imran M. Momin ◽  
Sujit Basu ◽  
Vijay K. Agarwal

Abstract A long-period (15 yr) simulation of sea surface salinity (SSS) obtained from a hindcast run of an ocean general circulation model (OGCM) forced by the NCEP–NCAR daily reanalysis product is analyzed in the tropical Indian Ocean (TIO). The objective of the study is twofold: assess the capability of the model to provide realistic simulations of SSS and characterize the SSS variability in view of upcoming satellite salinity missions. Model fields are evaluated in terms of mean, standard deviation, and characteristic temporal scales of SSS variability. Results show that the standard deviations range from 0.2 to 1.5 psu, with larger values in regions with strong seasonal transitions of surface currents (south of India) and along the coast in the Bay of Bengal (strong Kelvin-wave-induced currents). Comparison of simulated SSS with collocated SSS measurements from the National Oceanographic Data Center and Argo floats resulted in a high correlation of 0.85 and a root-mean-square error (RMSE) of 0.4 psu. The correlations are quite high (>0.75) up to a depth of 300 m. Daily simulations of SSS compare well with a Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) buoy in the eastern equatorial Indian Ocean (1.5°S, 90°E) with an RMSE of 0.3 psu and a correlation better than 0.6. Model SSS compares well with observations at all time scales (intraseasonal, seasonal, and interannual). The decorrelation scales computed from model and buoy SSS suggest that the proposed 10-day sampling of future salinity sensors would be able to resolve much of the salinity variability at time scales longer than intraseasonal. This inference is significant in view of satellite salinity sensors, such as Soil Moisture and Ocean Salinity (SMOS) and Aquarius.


Sign in / Sign up

Export Citation Format

Share Document