Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part II: East Africa

2011 ◽  
Vol 24 (14) ◽  
pp. 3718-3733 ◽  
Author(s):  
Mxolisi E. Shongwe ◽  
Geert Jan van Oldenborgh ◽  
Bart van den Hurk ◽  
Maarten van Aalst

Abstract Probable changes in mean and extreme precipitation in East Africa are estimated from general circulation models (GCMs) prepared for the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4). Bayesian statistics are used to derive the relative weights assigned to each member in the multimodel ensemble. There is substantial evidence in support of a positive shift of the whole rainfall distribution in East Africa during the wet seasons. The models give indications for an increase in mean precipitation rates and intensity of high rainfall events but for less severe droughts. Upward precipitation trends are projected from early this (twenty first) century. As in the observations, a statistically significant link between sea surface temperature gradients in the tropical Indian Ocean and short rains (October–December) in East Africa is simulated in the GCMs. Furthermore, most models project a differential warming of the Indian Ocean during boreal autumn. This is favorable for an increase in the probability of positive Indian Ocean zonal mode events, which have been associated with anomalously strong short rains in East Africa. On top of the general increase in rainfall in the tropics due to thermodynamic effects, a change in the structure of the Eastern Hemisphere Walker circulation is consistent with an increase in East Africa precipitation relative to other regions within the same latitudinal belt. A notable feature of this change is a weakening of the climatological subsidence over eastern Kenya. East Africa is shown to be a region in which a coherent projection of future precipitation change can be made, supported by physical arguments. Although the rate of change is still uncertain, almost all results point to a wetter climate with more intense wet seasons and less severe droughts.

2007 ◽  
Vol 20 (13) ◽  
pp. 3210-3228 ◽  
Author(s):  
J. Stuart Godfrey ◽  
Rui-Jin Hu ◽  
Andreas Schiller ◽  
R. Fiedler

Abstract Annual mean net heat fluxes from ocean general circulation models (OGCMs) are systematically too low in the tropical Indian Ocean, compared to observations. In the models, only some of the geostrophic inflow replacing southward Ekman outflow is colder than the minimum sea surface temperature (MINSST). Observed heat fluxes imply that much more inflow is colder than MINSST. Since inflow below MINSST can only join the surface Ekman transport after diathermal warming, the OGCMs must underestimate diathermal effects. A crude analog of the annual mean Indian Ocean heat budget was generated, using a rectangular box model with a deep “Indo–Pacific” gap at 7°–10°S in its eastern side. Wind stress was zonal and proportional to the Coriolis parameter, so Ekman transport was spatially constant and equaled Sverdrup transport. For three experiments, zonally integrated Ekman transport was steady and southward at 10 Sv (Sv ≡ 106 m3 s−1). In steady state, a 10 Sv “Indonesian Throughflow” fed a northward western boundary current of 10 Sv, which turned eastward along the northern boundary at 10°N to feed the southward Ekman transport. Most diathermal mixing occurred within an intense eddy in the northwest corner. Some of the geostrophic inflow was at temperatures colder than MINSST (found at the northeast corner of the eddy); it must warm to MINSST via diathermal mixing. Northern boundary upwelling exceeded the 10-Sv Ekman transport. The excess warms as it recirculates around the eddy, apparently supplying the heat to warm inflow below MINSST. In an experiment using the “flux-corrected transport” (FCT) scheme, diathermal mixing occurred in the strongly sheared currents around the eddy. However the Richardson number never became low enough to drive strong diathermal mixing, perhaps because (like that of other published models) the present model’s vertical resolution was too coarse. In three experiments, the dominant mixing was caused by horizontal diffusion, spurious convective overturn, and numerical mixing invoked by the FCT scheme, respectively. All three mixing mechanisms are physically suspect; such model problems (if widespread) must be resolved before the mismatch between observed and modeled heat fluxes can be addressed. However, the fact that the density profile at the western boundary must be hydrostatically stable places a lower limit on the area-integrated heat fluxes. Results from the three main experiments—and from many published OGCMs—are quite close to this lower limit.


2006 ◽  
Vol 19 (17) ◽  
pp. 4397-4417 ◽  
Author(s):  
N. H. Saji ◽  
S-P. Xie ◽  
T. Yamagata

Abstract The twentieth-century simulations using by 17 coupled ocean–atmosphere general circulation models (CGCMs) submitted to the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) are evaluated for their skill in reproducing the observed modes of Indian Ocean (IO) climate variability. Most models successfully capture the IO’s delayed, basinwide warming response a few months after El Niño–Southern Oscillation (ENSO) peaks in the Pacific. ENSO’s oceanic teleconnection into the IO, by coastal waves through the Indonesian archipelago, is poorly simulated in these models, with significant shifts in the turning latitude of radiating Rossby waves. In observations, ENSO forces, by the atmospheric bridge mechanism, strong ocean Rossby waves that induce anomalies of SST, atmospheric convection, and tropical cyclones in a thermocline dome over the southwestern tropical IO. While the southwestern IO thermocline dome is simulated in nearly all of the models, this ocean Rossby wave response to ENSO is present only in a few of the models examined, suggesting difficulties in simulating ENSO’s teleconnection in surface wind. A majority of the models display an equatorial zonal mode of the Bjerknes feedback with spatial structures and seasonality similar to the Indian Ocean dipole (IOD) in observations. This success appears to be due to their skills in simulating the mean state of the equatorial IO. Corroborating the role of the Bjerknes feedback in the IOD, the thermocline depth, SST, precipitation, and zonal wind are mutually positively correlated in these models, as in observations. The IOD–ENSO correlation during boreal fall ranges from −0.43 to 0.74 in the different models, suggesting that ENSO is one, but not the only, trigger for the IOD.


2016 ◽  
Vol 12 (7) ◽  
pp. 1499-1518 ◽  
Author(s):  
François Klein ◽  
Hugues Goosse ◽  
Nicholas E. Graham ◽  
Dirk Verschuren

Abstract. The multi-decadal to centennial hydroclimate changes in East Africa over the last millennium are studied by comparing the results of forced transient simulations by six general circulation models (GCMs) with published hydroclimate reconstructions from four lakes: Challa and Naivasha in equatorial East Africa, and Masoko and Malawi in southeastern inter-tropical Africa. All GCMs simulate fairly well the unimodal seasonal cycle of precipitation in the Masoko–Malawi region, while the bimodal seasonal cycle characterizing the Challa–Naivasha region is generally less well captured by most models. Model results and lake-based hydroclimate reconstructions display very different temporal patterns over the last millennium. Additionally, there is no common signal among the model time series, at least until 1850. This suggests that simulated hydroclimate fluctuations are mostly driven by internal variability rather than by common external forcing. After 1850, half of the models simulate a relatively clear response to forcing, but this response is different between the models. Overall, the link between precipitation and tropical sea surface temperatures (SSTs) over the pre-industrial portion of the last millennium is stronger and more robust for the Challa–Naivasha region than for the Masoko–Malawi region. At the inter-annual timescale, last-millennium Challa–Naivasha precipitation is positively (negatively) correlated with western (eastern) Indian Ocean SST, while the influence of the Pacific Ocean appears weak and unclear. Although most often not significant, the same pattern of correlations between East African rainfall and the Indian Ocean SST is still visible when using the last-millennium time series smoothed to highlight centennial variability, but only in fixed-forcing simulations. This means that, at the centennial timescale, the effect of (natural) climate forcing can mask the imprint of internal climate variability in large-scale teleconnections.


2010 ◽  
Vol 23 (13) ◽  
pp. 3720-3738 ◽  
Author(s):  
Shuanglin Li ◽  
Judith Perlwitz ◽  
Martin P. Hoerling ◽  
Xiaoting Chen

Abstract Atmospheric circulation changes during boreal winter of the second half of the twentieth century exhibit a trend toward the positive polarity of both the Northern Hemisphere annular mode (NAM) and the Southern Hemisphere annular mode (SAM). This has occurred in concert with other trends in the climate system, most notably a warming of the Indian Ocean. This study explores whether the tropical Indian Ocean warming played a role in forcing these annular trends. Five different atmospheric general circulation models (AGCMs) are forced with an idealized, transient warming of Indian Ocean sea surface temperature anomalies (SSTA); the results of this indicate that the warming contributed to the annular trend in the NH but offset the annular trend in SH. The latter result implies that the Indian Ocean warming may have partly cancelled the influence of the stratospheric ozone depletion over the southern polar area, which itself forced a trend toward the positive phase of the SAM. Diagnosis of the physical mechanisms for the annular responses indicates that the direct impact of the diabatic heating induced by the Indian Ocean warming does not account for the annular response in the extratropics. Instead, interactions between the forced stationary wave anomalies and transient eddies is key for the formation of annular structures.


Author(s):  
Brian AYUGI ◽  
Jiang Zhidong ◽  
Huanhuan Zhu ◽  
Hamida Ngoma ◽  
Hassen Babaousmail ◽  
...  

This study examines the improvement in coupled intercomparison project phase six (CMIP6) models against the predecessor CMIP5 in simulating mean and extreme precipitation over the East Africa region. The study compares the climatology of the precipitation indices simulated by the CMIP models with the CHIRPS dataset using robust statistical techniques for 1981 – 2005. The results display the varying performance of the general circulation models (GCMs) in the simulation of annual and seasonal precipitation climatology over the study domain. CMIP6-MME shows improved performance in the local annual mean cycle simulation with a better representation of two peaks, especially the MAM rainfall relative to its predecessor. Moreover, simulation of extreme indices is well captured in CMIP6 models relative to its predecessor. The CMIP6-MME performed better than the CMIP5-MME with lesser biases in simulating SDII, CDD, and R20mm over East Africa. Remarkably, most CMIP6 models are unable to simulate extremely wet days (R95p). A few CMIP6 models (e.g., NorESM2-MM and CNRM-CM6-1) depicts robust performance in reproducing the observed indices across all analyses. Conversely, OND season shows the overestimation of some indices (i.e., R95p, PRCPTOT), except for SDII, CDD, and R20mm. Consistent with other studies, the mean ensemble performance for both CMIP5/6 shows better performance due to the cancellation of some systematic errors in the individual models. Generally, the CMIP6 depicts improved performance in the simulation of MAM season akin CMIP5 models. However, the new model generation is still marred with uncertainty, thereby depicting substandard performance over the East Africa domain. This calls for further investigation of attribution studies into the sources of persistent systematic biases and a prerequisite for identifying individual models with robust features that can accurately simulate observed patterns for future usage.


2016 ◽  
Author(s):  
François Klein ◽  
Hugues Goosse ◽  
Nicholas E. Graham ◽  
Dirk Verschuren

Abstract. The multi-decadal to centennial hydroclimate changes in East Africa over the last millennium are studied by comparing the results of forced transient simulations by six General Circulation Models (GCMs) with published hydroclimate reconstructions from four lakes: Challa and Naivasha in equatorial East Africa, and Masoko and Malawi in southeastern inter-tropical Africa. The GCMs simulate fairly well the unimodal seasonal cycle of precipitation in the Masoko/Malawi region and the bimodal seasonal cycle characterizing the Challa/Naivasha region, except that in the latter the relative magnitude of the two rainy seasons is less well captured. Model results and lake-based hydroclimate reconstructions display very different temporal patterns over the last millennium. Additionally, there is no common signal among the model time series, at least until 1850. This suggests that simulated hydroclimate fluctuations are mostly driven by internal variability rather than by common external forcing. After that, half of the models used simulate a relatively clear response to forcing, but this response is different between the models. Overall, the link between precipitation and tropical sea surface temperatures (SSTs) over the pre-industrial portion of the last millennium is stronger and more robust for the Challa/Naivasha region than for the Masoko/Malawi region. At the inter-annual time scale, last-millennium Challa/Naivasha precipitation is positively (negatively) correlated with western (eastern) Indian Ocean SST, while the influence of the Pacific Ocean appears weak and unclear. Although most often not significant, the same pattern of correlations between the East African rainfall and the Indian Ocean SST is still visible when using the last-millennium time series smoothed to highlight centennial variability, but only in fixed-forcing simulations. This means that, at the centennial time scale, the effect of (natural) climate forcing can overwhelm internal climate variability in large-scale tele-connections.


2013 ◽  
Vol 4 (4) ◽  
pp. 440-457 ◽  
Author(s):  
Iván Rivas Acosta ◽  
Martín José Montero Martínez

The Intergovernmental Panel on Climate Change (IPCC) suggests that vulnerability to climate change depends on three main factors: exposure, sensitivity and adaptive capacity. Each factor was evaluated in a hydrologic context, for instance exposure was interpreted as a change in surface runoff. Factors were combined using a Geographic Information System (GIS) and an overall methodology to map hydrologic vulnerability was proposed. The Conchos River Basin, which is the main tributary of the Rio Grande, was used as a case study. The long-term rate of change in surface runoff was estimated considering the variation in future precipitation from 23 Atmosphere-Ocean General Circulation Models (AOGCM) by using the Reliability Ensemble Averaging (REA) method. Two climate change scenarios (A1B and A2) and three time horizons (2030, 2050 and 2100) were chosen. Results showed a decrease in surface runoff up to 28% (A1B-2100) north of the Basin. Hence, it is likely to have more frequent droughts. However, it would be challenging to compensate the lack of surface runoff since groundwater resources are already depleted. Finally, overall hydrologic vulnerability maps were obtained to locate the most vulnerable regions, where precisely adaption efforts would be more necessary to sustain environmental conditions.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1509
Author(s):  
Mengru Zhang ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Ming Pan ◽  
Shanhu Jiang ◽  
...  

In the context of global climate change, it is important to monitor abnormal changes in extreme precipitation events that lead to frequent floods. This research used precipitation indices to describe variations in extreme precipitation and analyzed the characteristics of extreme precipitation in four climatic (arid, semi-arid, semi-humid and humid) regions across China. The equidistant cumulative distribution function (EDCDF) method was used to downscale and bias-correct daily precipitation in eight Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs). From 1961 to 2005, the humid region had stronger and longer extreme precipitation compared with the other regions. In the future, the projected extreme precipitation is mainly concentrated in summer, and there will be large areas with substantial changes in maximum consecutive 5-day precipitation (Rx5) and precipitation intensity (SDII). The greatest differences between two scenarios (RCP4.5 and RCP8.5) are in semi-arid and semi-humid areas for summer precipitation anomalies. However, the area of the four regions with an increasing trend of extreme precipitation is larger under the RCP8.5 scenario than that under the RCP4.5 scenario. The increasing trend of extreme precipitation in the future is relatively pronounced, especially in humid areas, implying a potential heightened flood risk in these areas.


2019 ◽  
Author(s):  
Donald A. Slater ◽  
Denis Felikson ◽  
Fiamma Straneo ◽  
Heiko Goelzer ◽  
Christopher M. Little ◽  
...  

Abstract. Changes in the ocean are expected to be an important determinant of the Greenland Ice Sheet's future sea level contribution. Yet representing these changes in continental-scale ice sheet models remains challenging due to the small scale of the key physics, and limitations in processing understanding. Here we present the ocean forcing strategy for Greenland Ice Sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change 6th Assessment Report. Beginning from global atmosphere-ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland Ice Sheet models, termed the retreat and submarine melt implementations. The retreat implementation parameterizes glacier retreat as a function of projected submarine melting, is designed to be implementable by all ice sheet models, and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat, and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly-constrained parameterisations and as such, further research on submarine melting, calving and fjord-shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland Ice Sheet models to be systematically and consistently forced by the ocean for the first time, and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.


2021 ◽  
Author(s):  
Vinu Valsala

Abstract Per unit area of the tropical Indian Ocean receives the world’s largest tropical ocean rain and river runoff (RRW). The 3-dimensional spreading of RRW entering the tropical Indian Ocean and associated salinity and circulation anomalies are explored for 60 years using ocean reanalysis data tailored to a tracer transport model. Over 60 years, the cumulative impact of RRW entering the tropical Indian Ocean is to freshen the Indian Ocean basin as large as 2-0.1 p.s.u from the surface to 500m. The RRW has propagated to a vast extent of the Atlantic and Pacific Oceans via general circulation pathways. A quasi-equilibrium model of accumulation of RRW over the tropical Indian Ocean suggests that it induces clockwise geostrophic currents from the Bay of Bengal to the Arabian Sea over 0-500m depths, a net inter-basin transport tendency of 0.8±0.14 Sv year-1. The study implies that coupled climate models with apparent precipitation biases may miscalculate such salinity and circulation anomalies due to RRW and aggravating biases in simulated climate dynamics.


Sign in / Sign up

Export Citation Format

Share Document