scholarly journals Explorations of the Annual Mean Heat Budget of the Tropical Indian Ocean. Part I: Studies with an Idealized Model

2007 ◽  
Vol 20 (13) ◽  
pp. 3210-3228 ◽  
Author(s):  
J. Stuart Godfrey ◽  
Rui-Jin Hu ◽  
Andreas Schiller ◽  
R. Fiedler

Abstract Annual mean net heat fluxes from ocean general circulation models (OGCMs) are systematically too low in the tropical Indian Ocean, compared to observations. In the models, only some of the geostrophic inflow replacing southward Ekman outflow is colder than the minimum sea surface temperature (MINSST). Observed heat fluxes imply that much more inflow is colder than MINSST. Since inflow below MINSST can only join the surface Ekman transport after diathermal warming, the OGCMs must underestimate diathermal effects. A crude analog of the annual mean Indian Ocean heat budget was generated, using a rectangular box model with a deep “Indo–Pacific” gap at 7°–10°S in its eastern side. Wind stress was zonal and proportional to the Coriolis parameter, so Ekman transport was spatially constant and equaled Sverdrup transport. For three experiments, zonally integrated Ekman transport was steady and southward at 10 Sv (Sv ≡ 106 m3 s−1). In steady state, a 10 Sv “Indonesian Throughflow” fed a northward western boundary current of 10 Sv, which turned eastward along the northern boundary at 10°N to feed the southward Ekman transport. Most diathermal mixing occurred within an intense eddy in the northwest corner. Some of the geostrophic inflow was at temperatures colder than MINSST (found at the northeast corner of the eddy); it must warm to MINSST via diathermal mixing. Northern boundary upwelling exceeded the 10-Sv Ekman transport. The excess warms as it recirculates around the eddy, apparently supplying the heat to warm inflow below MINSST. In an experiment using the “flux-corrected transport” (FCT) scheme, diathermal mixing occurred in the strongly sheared currents around the eddy. However the Richardson number never became low enough to drive strong diathermal mixing, perhaps because (like that of other published models) the present model’s vertical resolution was too coarse. In three experiments, the dominant mixing was caused by horizontal diffusion, spurious convective overturn, and numerical mixing invoked by the FCT scheme, respectively. All three mixing mechanisms are physically suspect; such model problems (if widespread) must be resolved before the mismatch between observed and modeled heat fluxes can be addressed. However, the fact that the density profile at the western boundary must be hydrostatically stable places a lower limit on the area-integrated heat fluxes. Results from the three main experiments—and from many published OGCMs—are quite close to this lower limit.

2007 ◽  
Vol 20 (13) ◽  
pp. 3229-3248 ◽  
Author(s):  
Rui-Jin Hu ◽  
J. Stuart Godfrey

Abstract Present-day OGCMs give low values of annual mean net heat flux (AMNHF) in the tropical Indian Ocean, compared to climatologies. AMNHF generation is examined in an open-boundary model of this region with realistic coastlines. In the first two of three experiments only annual mean wind stresses were applied so that a modified form of the “minimum depth criterion” of the previous paper would be applicable. Area-integrated AMNHF was well below observed values, despite the fact that western boundary inflow was substantially deeper and colder than was expected from the modified minimum depth estimate. The model showed large “spikes” in the gradient of “depth-integrated steric height” (DISH) along the western boundary, coinciding with coastline steps (which were absent in the previous paper). Most diapycnal entrainment occurred next to the coast, near these steps. In a third experiment a seasonal cycle of wind stress was added to the same annual mean. Annual mean diapycnal mixing and entrainment increased and the western boundary inflow deepened, resulting in substantially greater AMNHF for the same annual mean Ekman transports. However, area-integrated AMNHF was still well below the mean of directly observed surface fluxes. The recirculation around the “Great Whirl” doubled, permitting more cold water crossing the equator in one year to mix with recirculated water generated in a previous year. Entrainment up to the surface thus went by stages, over more than one year. The increased Great Whirl was related to stronger annual mean curls of nonlinear terms in the momentum equation, while the deeper entrainment was caused by stronger annual mean diapycnal mixing. In all experiments, diapycnal mixing was primarily due to the “flux corrected transport” (FCT) advective scheme, which in effect replaces spurious convective overturn by numerical diffusion. More research is needed to solve such problems, but sensitivity of AMNHF in OGCMs to time-varying forcing—due to seasonal, intraseasonal, or baroclinic instability—may offer a new source of climate predictability.


2005 ◽  
Vol 35 (7) ◽  
pp. 1206-1222 ◽  
Author(s):  
Yann Friocourt ◽  
Sybren Drijfhout ◽  
Bruno Blanke ◽  
Sabrina Speich

Abstract The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.


2011 ◽  
Vol 24 (14) ◽  
pp. 3718-3733 ◽  
Author(s):  
Mxolisi E. Shongwe ◽  
Geert Jan van Oldenborgh ◽  
Bart van den Hurk ◽  
Maarten van Aalst

Abstract Probable changes in mean and extreme precipitation in East Africa are estimated from general circulation models (GCMs) prepared for the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4). Bayesian statistics are used to derive the relative weights assigned to each member in the multimodel ensemble. There is substantial evidence in support of a positive shift of the whole rainfall distribution in East Africa during the wet seasons. The models give indications for an increase in mean precipitation rates and intensity of high rainfall events but for less severe droughts. Upward precipitation trends are projected from early this (twenty first) century. As in the observations, a statistically significant link between sea surface temperature gradients in the tropical Indian Ocean and short rains (October–December) in East Africa is simulated in the GCMs. Furthermore, most models project a differential warming of the Indian Ocean during boreal autumn. This is favorable for an increase in the probability of positive Indian Ocean zonal mode events, which have been associated with anomalously strong short rains in East Africa. On top of the general increase in rainfall in the tropics due to thermodynamic effects, a change in the structure of the Eastern Hemisphere Walker circulation is consistent with an increase in East Africa precipitation relative to other regions within the same latitudinal belt. A notable feature of this change is a weakening of the climatological subsidence over eastern Kenya. East Africa is shown to be a region in which a coherent projection of future precipitation change can be made, supported by physical arguments. Although the rate of change is still uncertain, almost all results point to a wetter climate with more intense wet seasons and less severe droughts.


2014 ◽  
Vol 27 (13) ◽  
pp. 4970-4995 ◽  
Author(s):  
Charlotte A. DeMott ◽  
Cristiana Stan ◽  
David A. Randall ◽  
Mark D. Branson

The interaction of ocean coupling and model physics in the simulation of the intraseasonal oscillation (ISO) is explored with three general circulation models: the Community Atmospheric Model, versions 3 and 4 (CAM3 and CAM4), and the superparameterized CAM3 (SPCAM3). Each is integrated coupled to an ocean model, and as an atmosphere-only model using sea surface temperatures (SSTs) from the coupled SPCAM3, which simulates a realistic ISO. For each model, the ISO is best simulated with coupling. For each SST boundary condition, the ISO is best simulated in SPCAM3. Near-surface vertical gradients of specific humidity, [Formula: see text] (temperature, [Formula: see text]), explain ~20% (50%) of tropical Indian Ocean latent (sensible) heat flux variance, and somewhat less of west Pacific variance. In turn, local SST anomalies explain ~5% (25%) of [Formula: see text] [Formula: see text] variance in coupled simulations, and less in uncoupled simulations. Ergo, latent and sensible heat fluxes are strongly controlled by wind speed fluctuations, which are largest in the coupled simulations, and represent a remote response to coupling. The moisture budget reveals that wind variability in coupled simulations increases east-of-convection midtropospheric moistening via horizontal moisture advection, which influences the direction and duration of ISO propagation. These results motivate a new conceptual model for the role of ocean feedbacks on the ISO. Indian Ocean surface fluxes help developing convection attain a magnitude capable of inducing the circulation anomalies necessary for downstream moistening and propagation. The “processing” of surface fluxes by model physics strongly influences the moistening details, leading to model-dependent responses to coupling.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Vinu Valsala ◽  
Shamil Maksyutov

A surface pathway of the subsurface Indonesian Throughflow (ITF) in the southeastern Indian Ocean is proposed using a combined analysis of Lagrangian particles and passive tracers derived from two independent tools: an Ocean General Circulation Model (OGCM) and Simple Ocean Data Assimilation (SODA.2.0.2) reanalysis data. This newly suggested pathway follows the processes in succession as upwelling in the south Java coast, offshore Ekman drift and subduction into the thermocline centered on 20∘S. The upwelling of subsurface ITF along the south Java coast is found to occur from August to October. Upon surfacing, the ITF advects southwestward being trapped in the surface Ekman layer for an approximate period of 260 days and reaches the southeastern tropical Indian Ocean subduction zone centered on 20∘S which is demarcated by the Zero Wind Stress Curl (ZWSC) and subducts there. The particle trajectory revealed that during the subduction within the ZWSC region, the surface eastward flow above 120 m depth carries the particle about 10∘ to the east and westward flow below this depth carries the particle to the western Indian Ocean along the thermocline. These pathways are confirmed by a series of tracer experiments using SODA reanalysis data. The effects of vertical mixing and entrainment on the surfacing of the ITF at south Java coast were identified.


2010 ◽  
Vol 23 (13) ◽  
pp. 3720-3738 ◽  
Author(s):  
Shuanglin Li ◽  
Judith Perlwitz ◽  
Martin P. Hoerling ◽  
Xiaoting Chen

Abstract Atmospheric circulation changes during boreal winter of the second half of the twentieth century exhibit a trend toward the positive polarity of both the Northern Hemisphere annular mode (NAM) and the Southern Hemisphere annular mode (SAM). This has occurred in concert with other trends in the climate system, most notably a warming of the Indian Ocean. This study explores whether the tropical Indian Ocean warming played a role in forcing these annular trends. Five different atmospheric general circulation models (AGCMs) are forced with an idealized, transient warming of Indian Ocean sea surface temperature anomalies (SSTA); the results of this indicate that the warming contributed to the annular trend in the NH but offset the annular trend in SH. The latter result implies that the Indian Ocean warming may have partly cancelled the influence of the stratospheric ozone depletion over the southern polar area, which itself forced a trend toward the positive phase of the SAM. Diagnosis of the physical mechanisms for the annular responses indicates that the direct impact of the diabatic heating induced by the Indian Ocean warming does not account for the annular response in the extratropics. Instead, interactions between the forced stationary wave anomalies and transient eddies is key for the formation of annular structures.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


2021 ◽  
Author(s):  
Vinu Valsala

Abstract Per unit area of the tropical Indian Ocean receives the world’s largest tropical ocean rain and river runoff (RRW). The 3-dimensional spreading of RRW entering the tropical Indian Ocean and associated salinity and circulation anomalies are explored for 60 years using ocean reanalysis data tailored to a tracer transport model. Over 60 years, the cumulative impact of RRW entering the tropical Indian Ocean is to freshen the Indian Ocean basin as large as 2-0.1 p.s.u from the surface to 500m. The RRW has propagated to a vast extent of the Atlantic and Pacific Oceans via general circulation pathways. A quasi-equilibrium model of accumulation of RRW over the tropical Indian Ocean suggests that it induces clockwise geostrophic currents from the Bay of Bengal to the Arabian Sea over 0-500m depths, a net inter-basin transport tendency of 0.8±0.14 Sv year-1. The study implies that coupled climate models with apparent precipitation biases may miscalculate such salinity and circulation anomalies due to RRW and aggravating biases in simulated climate dynamics.


2020 ◽  
Author(s):  
Gwenaël Milcareck ◽  
Sandrine Guerlet ◽  
Jan Vatant d'Ollone ◽  
Aymeric Spiga ◽  
Ehouarn Millour

<p>Uranus and Neptune’s atmospheres are active worlds, with vigorous meteorological activity and strong zonal winds occurring despite small absorbed solar radiation and internal heat fluxes. A few 3-D General Circulation Models (GCM) of their atmospheres exist in the literature, focusing mostly on understanding their zonal jet structure [1,2] or the evolution of large disturbances [3,4].</p> <p>Building a complete and realistic GCM is a challenging task, given the long orbital and radiative timescales involved, along with the rather high spatial and temporal resolution needed when solving the atmospheric equations of motion on the rotating sphere. For this reason, existing GCMs include crude representation of radiative transfer (a simple relaxation scheme to an equilibrium temperature profile) and/or neglect seasonal variations.</p> <p> </p> <p>We are currently developing a GCM for Uranus and Neptune’s atmospheres, building on our existing expertise on Jupiter and Saturn GCMs [5,6]. Compared to other existing GCMs for ice giants, our model includes state-of-the art parametrization of radiative transfer. The radiation scheme is a full radiative transfer using correlated-k distributions. Seasonal variations of the incoming solar flux are taken into account. Opacity sources include gaseous opacity from methane, ethane, acetylene, H2-H2, H2-He continua along with opacity from two aerosol layers: one optically thick cloud with a base at the 2-bar level and one optically thin haze layer with a base at 300 mbar. These layers are consistent with the putative H2S and CH4 clouds reported by many observational studies (eg [7,8]).</p> <p> </p> <p>Simulations at radiative-equilibrium are discussed in a companion abstract [9] ; in this one we focus on dynamical aspects. We will present results from first 3D GCM simulations performed at a horizontal resolution up to 256x192 in longitude x latitude (corresponding to 1.4°x0.9°), extending from 3 bars to 0.3 mbar. A broad equatorial retrograde jet develop on both Uranus and Neptune and two prograde jets emerge near 50° latitude in the Neptune simulation. This is in qualitative agreement with the observed zonal wind structure on Neptune, although the zonal jet wind speeds are much smaller than the observed ones. We are able to show that acceleration by eddies is an important contributor to the two prograde jets in the Neptune simulation.</p> <p>However, the Uranus simulation does not exhibit high-latitude prograde jets that have been reported by cloud-tracking observations. In other words, the zonal jet structure currently obtained in our simulations differs significantly between the two planets, which is puzzling and at odds with their qualitatively similar observed zonal wind structures. This might indicate that important processes governing the atmospheric circulation of ice giants is missing in our GCM.</p> <p>Another outcome of these simulations is that all tropospheric zonal jets are slowed down to near zero wind speeds in the lower stratosphere. The reason behind this behaviour is under investigation, as is the associated meridional circulation.</p> <p> </p> <p>Next steps will include the study of the role of Uranus and Neptune respective axial tilts and internal heat fluxes (or lack thereof) on their circulation. Furthermore, our GCM is still lacking important processes, such as latent heat release from water and other condensing species, and is lacking a realistic parametrization for convective processes. This might explain the observation-model mismatches in their zonal wind structure and will be the subject of future developments.</p> <p> </p> <p> </p> <p>[1] Lian and Showman, Icarus, Vol. 207, Issue 1, p. 373-393, 2010.</p> <p>[2] Liu and Schneider, Journal of the Atmospheric Sciences, Vol. 67, issue 11, pp. 3652-3672, 2010.</p> <p>[3] Lebeau and Dowling, Icarus, Vol. 132, Issue 2, pp. 239-265, 1998.</p> <p>[4] Hammel et al., Icarus, Vol. 201, Issue 1, p. 257-271, 2006.</p> <p>[5] Spiga et al., Icarus, Vol. 335, article id. 113377, 2020.</p> <p>[6] Guerlet et al., accepted in Icarus, 2020.</p> <p>[7] Irwin et al., Icarus, Vol. 227, p. 37-48, 2014.</p> <p>[8] Sromovsky et al., Icarus, Vol. 317, p. 266-306, 2018.</p> <p>[9] Vatant d’Ollone et al., EPSC 2020</p>


Sign in / Sign up

Export Citation Format

Share Document