scholarly journals Assessing Satellite-Based Rainfall Estimates in Semiarid Watersheds Using the USDA-ARS Walnut Gulch Gauge Network and TRMM PR

2012 ◽  
Vol 13 (5) ◽  
pp. 1579-1588 ◽  
Author(s):  
Eyal Amitai ◽  
Carl L. Unkrich ◽  
David C. Goodrich ◽  
Emad Habib ◽  
Bryson Thill

Abstract The rain gauge network associated with the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona provides a unique opportunity for direct comparisons of in situ measurements and satellite-based instantaneous rain rate estimates like those from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR). The WGEW network is the densest rain gauge network in the PR coverage area for watersheds greater than 10 km2. It consists of 88 weighing rain gauges within a 149-km2 area. On average, approximately 10 gauges can be found in each PR field of view (~5-km diameter). All gauges are very well synchronized with 1-min reporting intervals. This allows generating very-high-temporal-resolution rain rate fields and obtaining accurate estimates of the area-average rain rate for the entire watershed and for a single PR field of view. In this study, instantaneous rain rate fields from the PR and the spatially interpolated gauge measurements (on a 100 m × 100 m grid, updated every 1 min) are compared for all TRMM overpasses in which the PR recorded rain within the WGEW boundaries (25 overpasses during 1999–2010). The results indicate very good agreement between the fields with low bias values (<10%) and high correlation coefficients, especially for the near-nadir cases (>0.9). The correlation is high at overpass time but the peak occurs several minutes after the overpass, which can be explained by the fact that it takes several minutes for the raindrops to reach the gauge from the time they are observed by the PR. The correlation improves with the new version of the TRMM algorithm (V7). The study includes assessment of the accuracy of the reference products.

2019 ◽  
Vol 20 (5) ◽  
pp. 1015-1026 ◽  
Author(s):  
Nobuyuki Utsumi ◽  
Hyungjun Kim ◽  
F. Joseph Turk ◽  
Ziad. S. Haddad

Abstract Quantifying time-averaged rain rate, or rain accumulation, on subhourly time scales is essential for various application studies requiring rain estimates. This study proposes a novel idea to estimate subhourly time-averaged surface rain rate based on the instantaneous vertical rain profile observed from low-Earth-orbiting satellites. Instantaneous rain estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) are compared with 1-min surface rain gauges in North America and Kwajalein atoll for the warm seasons of 2005–14. Time-lagged correlation analysis between PR rain rates at various height levels and surface rain gauge data shows that the peak of the correlations tends to be delayed for PR rain at higher levels up to around 6-km altitude. PR estimates for low to middle height levels have better correlations with time-delayed surface gauge data than the PR’s estimated surface rain rate product. This implies that rain estimates for lower to middle heights may have skill to estimate the eventual surface rain rate that occurs 1–30 min later. Therefore, in this study, the vertical profiles of TRMM PR instantaneous rain estimates are averaged between the surface and various heights above the surface to represent time-averaged surface rain rate. It was shown that vertically averaged PR estimates up to middle heights (~4.5 km) exhibit better skill, compared to the PR estimated instantaneous surface rain product, to represent subhourly (~30 min) time-averaged surface rain rate. These findings highlight the merit of additional consideration of vertical rain profiles, not only instantaneous surface rain rate, to improve subhourly surface estimates of satellite-based rain products.


2005 ◽  
Vol 2 ◽  
pp. 103-109 ◽  
Author(s):  
M. C. Llasat ◽  
T. Rigo ◽  
M. Ceperuelo ◽  
A. Barrera

Abstract. The estimation of convective precipitation and its contribution to total precipitation is an important issue both in hydrometeorology and radio links. The greatest part of this kind of precipitation is related with high intensity values that can produce floods and/or damage and disturb radio propagation. This contribution proposes two approaches for the estimation of convective precipitation, using the β parameter that is related with the greater or lesser convective character of the precipitation event, and its time and space distribution throughout the entire series of the samples. The first approach was applied to 126 rain gauges of the Automatic System of Hydrologic Information of the Internal Basins of Catalonia (NE Spain). Data are series of 5-min rain rate, for the period 1996-2002, and a long series of 1-min rain rate starting in 1927. Rainfall events were classified according to this parameter. The second approach involved using information obtained by the meteorological radar located near Barcelona. A modified version of the SCIT method for the 3-D analysis and a combination of different methods for the 2-D analysis were applied. Convective rainfall charts and β charts were reported. Results obtained by the rain gauge network and by the radar were compared. The application of the β parameter to improve the rainfall regionalisation was demonstrated.


2021 ◽  
Vol 13 (15) ◽  
pp. 2931
Author(s):  
Jhonatan Ureña ◽  
Oliver Saavedra ◽  
Takuji Kubota

This study proposes the use of satellite-based precipitation (SBP) products in combination with local rain gauges in Bolivia. Using this approach, the country was divided into three major hydrographic basins: the Altiplano, La Plata, and Amazon. The selected SBP products were Global Satellite Mapping of Precipitation (GSMaP) and Climate Hazards Group Infrared Precipitations with Stations (CHIRPS). The correlation coefficients of SBP were found to be from 0.94 to 0.98 at monthly temporal scale. The applied methodology iterates correction factors, taking advantage of surface measurements from the national rain gauge network; five iterations showed stability in the convergence. Once the improved SBP product was obtained, validation was performed by reducing ten percent the number of rain gauges randomly. After applying the correction factors, the combined products improved their correlation coefficient values by up to 0.99. The validation of the methodology showed that with a combination of products using 90% of the rain gauges, correlation coefficients ranged from 0.98 to 0.99. Among the three basins, the Amazon basin presented the poorest results; this fact may be related to low rain gauge density compared to the other two basins. The validation approach shows that the methodology has an acceptable performance. The database generated in this study, now open to the public, is ready to be used for different hydrological applications such as precipitation time-series analysis, water balance, and water assessment at the sub-basin scale within Bolivia.


2010 ◽  
Vol 49 (12) ◽  
pp. 2591-2602 ◽  
Author(s):  
Gabriele Villarini

Abstract The focus of this study is the evaluation of the research-version Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) rainfall product at its finest spatial and temporal resolutions (3-hourly and 0.25° × 0.25°) over the Rome, Italy, metropolitan area during the period from October 2008 to January 2009. Accurate ground reference rainfall estimates for two satellite pixels are obtained from a dense rain gauge network (22 rain gauges in one pixel and 16 in the other one). The evaluation is based on examination of time series, scatterplots, and survival functions, as well as measures of agreement and disagreement. The results of this study point to the importance of using the TRMM satellite for rainfall estimation. Suggestions in terms of minimum number of rain gauges required to estimate ground reference rainfall are also provided.


2020 ◽  
Author(s):  
Remco (C.Z.) van de Beek ◽  
Jafet Andersson ◽  
Jonas Olsson ◽  
Jonas Hansryd

<p>Accurate rainfall measurements are very important in hydrology, meteorology, agriculture and other fields. Traditionally rain gauges combined with radar have been used to measure rain rates. However, these instruments are not always available. Also combining point measurements at the ground with measured reflectivities of volumes in the air to an accurate rain rate map at ground level poses challenges. Commercial microwave link networks can help in these areas as these can provide measurements at a high temporal resolution and tend to be available wherever people live, with highest network densities where most people are. They also measure precipitation along a path near ground level and offer a way to close the gap between rain gauge measurements and radar.</p><p>In this study we highlight the work SMHI has performed on deriving rain rates from commercial microwave links since 2015. This started with a pilot study in Gothenburg. The signal strengths of 364 microwave links were sampled every ten seconds and were used to create rainfall maps at a one-minute temporal resolution and 500m spatial resolution. These rain maps were then applied in a hydrological experiment and compared to rain gauge and radar measurements. The results were very promising, not only due to the high temporal and spatial resolution, but also with the accuracy of the actual measurements. The correlation was found to be equal to those of the rain gauges, while links were found to overestimate rainfall volumes on average. A demo site was created showing the one-minute rain rate maps and can be found at: https://www.smhi.se/en/services/professional-services/microweather/. Since then the methodology has been further improved and also applied within Stockholm in a new hydrological experiment. Currently new regions are being considered, as well as novel ways to merge data sources to create high quality precipitation maps. This contribution summarizes the progress to date.</p>


2008 ◽  
Vol 25 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Jianxin Wang ◽  
Brad L. Fisher ◽  
David B. Wolff

Abstract This paper describes the cubic spline–based operational system for the generation of the Tropical Rainfall Measuring Mission (TRMM) 1-min rain-rate product 2A-56 from tipping-bucket (TB) gauge measurements. A simulated TB gauge from a Joss–Waldvogel disdrometer is employed to evaluate the errors of the TB rain-rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When 1-min rain rates are averaged over 4–7-min intervals or longer, the errors dramatically reduce. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-min rain rates higher and lower than 3 mm h−1, respectively. These errors decrease to 5% and 14% when rain rates are used at the 7-min scale. The radar reflectivity–rain-rate distributions drawn from the large amount of 7-min rain rates and radar reflectivity data are mostly insensitive to the event definition. The time shift due to inaccurate clocks can also cause rain-rate estimation errors, which increase with the shifted time length. Finally, some recommendations are proposed for possible improvements of rainfall measurements and rain-rate estimations.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1624 ◽  
Author(s):  
Akbari ◽  
Haghighi ◽  
Aghayi ◽  
Javadian ◽  
Tajrishy ◽  
...  

Water management in arid basins often lacks sufficient hydro-climatological data because, e.g., rain gauges are typically absent at high elevations and inflow to ungauged areas around large closed lakes is difficult to estimate. We sought to improve precipitation and runoff estimation in an arid basin (Lake Urmia, Iran) using methods involving assimilation of satellite-based data. We estimated precipitation using interpolation of rain gauge data by kriging, downscaling the Tropical Rainfall Measuring Mission (TRMM), and cokriging interpolation of in-situ records with Remote Sensing (RS)-based data. Using RS-based data application in estimations gave more precise results, by compensating for lack of data at high elevations. Cokriging interpolation of rain gauges by TRMM and Digitized Elevation Model (DEM) gave 4–9 mm lower Root Mean Square Error (RMSE) in different years compared with kriging. Downscaling TRMM improved its accuracy by 14 mm. Using the most accurate precipitation result, we modeled annual direct runoff with Kennessey and Soil Conservation Service Curve Number (SCS-CN) models. These models use land use, permeability, and slope data. In runoff modeling, Kennessey gave higher accuracy. Calibrating Kennessey reduced the Normalized RMSE (NRMSE) from 1 in the standard model to 0.44. Direct runoff coefficient map by 1 km spatial resolution was generated by calibrated Kennessey. Validation by the closest gauges to the lake gave a NRMSE of 0.41 which approved the accuracy of modeling.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Stefany Correia de Paula ◽  
Rutineia Tassi ◽  
Daniel Gustavo Allasia Piccilli ◽  
Francisco Lorenzini Neto

ABSTRACT In this study was evaluated the influence of the rainfall monitoring network density and distribution on the result of rainfall-runoff daily simulations of a lumped model (IPH II) considering basins with different drainage scales: Turvo River (1,540 km2), Ijuí River (9,462 km2), Jacuí River (38,700 km2) and Upper Uruguay (61,900 km2). For this purpose, four rain gauge coverage scenarios were developed: (I) 100%; (II) 75%; (III) 50% and (IV) 25% of the rain gauges of the basin. Additionally, a scenario considering the absence of monitoring was evaluated, in which the rainfall used in the modeling was estimated based on the TRMM satellite. Was verified that, in some situations, the modeling produced better results for scenarios with a lower rain gauges density if the available gauges presented better spatial distribution. Comparatively to the simulations performed with the rainfall estimated by the TRMM, the results obtained using rain gauges’ data were better, even in scenarios with low rain gauges density. However, when the poor spatial distribution of the rain gauges was associated with low density, the satellite’s estimation provided better results. Thus, was conclude that spatial distribution of the rain gauge network is important in the rainfall representation and that estimates obtained by the TRMM can be presented as alternatives for basins with a deficient monitoring network.


2007 ◽  
Vol 24 (9) ◽  
pp. 1598-1607 ◽  
Author(s):  
Jeremy D. DeMoss ◽  
Kenneth P. Bowman

Abstract During the first three-and-a-half years of the Tropical Rainfall Measuring Mission (TRMM), the TRMM satellite operated at a nominal altitude of 350 km. To reduce drag, save maneuvering fuel, and prolong the mission lifetime, the orbit was boosted to 403 km in August 2001. The change in orbit altitude produced small changes in a wide range of observing parameters, including field-of-view size and viewing angles. Due to natural variability in rainfall and sampling error, it is not possible to evaluate possible changes in rainfall estimates from the satellite data alone. Changes in TRMM Microwave Imager (TMI) and the precipitation radar (PR) precipitation observations due to the orbit boost are estimated by comparing them with surface rain gauges on ocean buoys operated by the NOAA/Pacific Marine Environment Laboratory (PMEL). For each rain gauge, the bias between the satellite and the gauge for pre- and postboost time periods is computed. For the TMI, the satellite is biased ∼12% low relative to the gauges during the preboost period and ∼1% low during the postboost period. The mean change in bias relative to the gauges is approximately 0.4 mm day−1. The change in TMI bias is rain-rate-dependent, with larger changes in areas with higher mean precipitation rates. The PR is biased significantly low relative to the gauges during both boost periods, but the change in bias from the pre- to postboost period is not statistically significant.


2014 ◽  
Vol 15 (6) ◽  
pp. 2347-2369 ◽  
Author(s):  
Matthew P. Young ◽  
Charles J. R. Williams ◽  
J. Christine Chiu ◽  
Ross I. Maidment ◽  
Shu-Hua Chen

Abstract Tropical Applications of Meteorology Using Satellite and Ground-Based Observations (TAMSAT) rainfall estimates are used extensively across Africa for operational rainfall monitoring and food security applications; thus, regional evaluations of TAMSAT are essential to ensure its reliability. This study assesses the performance of TAMSAT rainfall estimates, along with the African Rainfall Climatology (ARC), version 2; the Tropical Rainfall Measuring Mission (TRMM) 3B42 product; and the Climate Prediction Center morphing technique (CMORPH), against a dense rain gauge network over a mountainous region of Ethiopia. Overall, TAMSAT exhibits good skill in detecting rainy events but underestimates rainfall amount, while ARC underestimates both rainfall amount and rainy event frequency. Meanwhile, TRMM consistently performs best in detecting rainy events and capturing the mean rainfall and seasonal variability, while CMORPH tends to overdetect rainy events. Moreover, the mean difference in daily rainfall between the products and rain gauges shows increasing underestimation with increasing elevation. However, the distribution in satellite–gauge differences demonstrates that although 75% of retrievals underestimate rainfall, up to 25% overestimate rainfall over all elevations. Case studies using high-resolution simulations suggest underestimation in the satellite algorithms is likely due to shallow convection with warm cloud-top temperatures in addition to beam-filling effects in microwave-based retrievals from localized convective cells. The overestimation by IR-based algorithms is attributed to nonraining cirrus with cold cloud-top temperatures. These results stress the importance of understanding regional precipitation systems causing uncertainties in satellite rainfall estimates with a view toward using this knowledge to improve rainfall algorithms.


Sign in / Sign up

Export Citation Format

Share Document