scholarly journals Summer Soil Moisture Spatiotemporal Variability in Southeastern Arizona

2014 ◽  
Vol 15 (4) ◽  
pp. 1473-1485 ◽  
Author(s):  
Susan Stillman ◽  
Jason Ninneman ◽  
Xubin Zeng ◽  
Trenton Franz ◽  
Russell L. Scott ◽  
...  

Abstract Soil moisture is important for many applications, but its measurements are lacking globally and even regionally. The Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona has measured near-surface 5-cm soil moisture with 19 in situ probes since 2002 within its 150 km2 area. Using various criteria to identify erroneous data, it is found that in any given period from 1 July to 30 September from 2002 to 2011, 13–17 of these probes were producing reasonable data, and this is sufficient to estimate area-averaged seasonal soil moisture. A soil water balance model is then developed using rainfall as its only input to spatially extrapolate soil moisture estimates to the 88 rain gauges located within the watershed and to extend the measurement period to 56 years. The model is calibrated from 2002 to 2011 so that the daily in situ and modeled soil moisture time series have a high average correlation of 0.89 and a root-mean-square deviation of 0.032 m3 m−3. By interpolating modeled soil moisture from the 88 rain gauges to a 100-m gridded domain over WGEW, it is found that spatial variability often increases when 88 (rather than 13–17) estimates are taken. While no trend in the spatial average surface soil moisture is found, large variability in the spatial average soil moisture from 1 July to 30 September is observed from year to year, ranging from 0.05 to 0.09 m3 m−3. In addition to spatiotemporal analysis of WGEW, this gridded soil moisture product from 1956 to 2011 can be used for validation of satellite-based and reanalysis products and land surface models.

2021 ◽  
Vol 25 (1) ◽  
pp. 17-40
Author(s):  
Hylke E. Beck ◽  
Ming Pan ◽  
Diego G. Miralles ◽  
Rolf H. Reichle ◽  
Wouter A. Dorigo ◽  
...  

Abstract. Information about the spatiotemporal variability of soil moisture is critical for many purposes, including monitoring of hydrologic extremes, irrigation scheduling, and prediction of agricultural yields. We evaluated the temporal dynamics of 18 state-of-the-art (quasi-)global near-surface soil moisture products, including six based on satellite retrievals, six based on models without satellite data assimilation (referred to hereafter as “open-loop” models), and six based on models that assimilate satellite soil moisture or brightness temperature data. Seven of the products are introduced for the first time in this study: one multi-sensor merged satellite product called MeMo (Merged soil Moisture) and six estimates from the HBV (Hydrologiska Byråns Vattenbalansavdelning) model with three precipitation inputs (ERA5, IMERG, and MSWEP) with and without assimilation of SMAPL3E satellite retrievals, respectively. As reference, we used in situ soil moisture measurements between 2015 and 2019 at 5 cm depth from 826 sensors, located primarily in the USA and Europe. The 3-hourly Pearson correlation (R) was chosen as the primary performance metric. We found that application of the Soil Wetness Index (SWI) smoothing filter resulted in improved performance for all satellite products. The best-to-worst performance ranking of the four single-sensor satellite products was SMAPL3ESWI, SMOSSWI, AMSR2SWI, and ASCATSWI, with the L-band-based SMAPL3ESWI (median R of 0.72) outperforming the others at 50 % of the sites. Among the two multi-sensor satellite products (MeMo and ESA-CCISWI), MeMo performed better on average (median R of 0.72 versus 0.67), probably due to the inclusion of SMAPL3ESWI. The best-to-worst performance ranking of the six open-loop models was HBV-MSWEP, HBV-ERA5, ERA5-Land, HBV-IMERG, VIC-PGF, and GLDAS-Noah. This ranking largely reflects the quality of the precipitation forcing. HBV-MSWEP (median R of 0.78) performed best not just among the open-loop models but among all products. The calibration of HBV improved the median R by +0.12 on average compared to random parameters, highlighting the importance of model calibration. The best-to-worst performance ranking of the six models with satellite data assimilation was HBV-MSWEP+SMAPL3E, HBV-ERA5+SMAPL3E, GLEAM, SMAPL4, HBV-IMERG+SMAPL3E, and ERA5. The assimilation of SMAPL3E retrievals into HBV-IMERG improved the median R by +0.06, suggesting that data assimilation yields significant benefits at the global scale.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8371
Author(s):  
Irina Ontel ◽  
Anisoara Irimescu ◽  
George Boldeanu ◽  
Denis Mihailescu ◽  
Claudiu-Valeriu Angearu ◽  
...  

This paper will assess the sensitivity of soil moisture anomaly (SMA) obtained from the Soil water index (SWI) product Metop ASCAT, to identify drought in Romania. The SWI data were converted from relative values (%) to absolute values (m3 m−3) using the soil porosity method. The conversion results (SM) were validated using soil moisture in situ measurements from ISMN at 5 cm depths (2015–2020). The SMA was computed based on a 10 day SWI product, between 2007 and 2020. The analysis was performed for the depths of 5 cm (near surface), 40 cm (sub surface), and 100 cm (root zone). The standardized precipitation index (SPI), land surface temperature anomaly (LST anomaly), and normalized difference vegetation index anomaly (NDVI anomaly) were computed in order to compare the extent and intensity of drought events. The best correlations between SM and in situ measurements are for the stations located in the Getic Plateau (Bacles (r = 0.797) and Slatina (r = 0.672)), in the Western Plain (Oradea (r = 0.693)), and in the Moldavian Plateau (Iasi (r = 0.608)). The RMSE were between 0.05 and 0.184. Furthermore, the correlations between the SMA and SPI, the LST anomaly, and the NDVI anomaly were significantly registered in the second half of the warm season (July–September). Due to the predominantly agricultural use of the land, the results can be useful for the management of water resources and irrigation in regions frequently affected by drought.


2020 ◽  
Author(s):  
Hylke E. Beck ◽  
Ming Pan ◽  
Diego G. Miralles ◽  
Rolf H. Reichle ◽  
Wouter A. Dorigo ◽  
...  

Abstract. Information about the spatiotemporal variability of soil moisture is critical for many purposes, including monitoring of hydrologic extremes, irrigation scheduling, and prediction of agricultural yields. We evaluated the temporal dynamics of 18 state-of-the-art (quasi-)global near-surface soil moisture products, including six based on satellite retrievals, six based on models without satellite data assimilation (referred to hereafter as open-loop models), and six based on models that assimilate satellite soil moisture or brightness temperature data. Seven of the products are introduced for the first time in this study: one multi-sensor merged satellite product called MeMo and six estimates from the HBV model with three precipitation inputs (ERA5, IMERG, and MSWEP) and with and without assimilation of SMAPL3E satellite retrievals, respectively. As reference, we used in situ soil moisture measurements between 2015 and 2019 at 5-cm depth from 826 sensors, located primarily in the USA and Europe. The 3-hourly Pearson correlation (R) was chosen as the primary performance metric. The median R ± interquartile range across all sites and products in each category was 0.66 ± 0.30 for the satellite products, 0.69 ± 0.25 for the open-loop models, and 0.72 ± 0.22 for the models with satellite data assimilation. The best-to-worst performance ranking of the four single-sensor satellite products was SMAPL3E, SMOS, AMSR2, and ASCAT, with the L-band-based SMAPL3E (median R of 0.72) outperforming the others at 50 % of the sites. Among the two multi-sensor satellite products (MeMo and ESA-CCI), MeMo performed better on average (median R of 0.72 versus 0.67), mainly due to the inclusion of SMAPL3E. The best-to-worst performance ranking of the six open-loop models was HBV-MSWEP, HBV-ERA5, ERA5-Land, HBV-IMERG, VIC-PGF, and GLDAS-Noah. This ranking largely reflects the quality of the precipitation forcing. HBV-MSWEP (median R of 0.78) performed best not just among the open-loop models but among all products. The calibration of HBV improved the median R by +0.12 on average compared to random parameters, highlighting the importance of model calibration. The best-to-worst performance ranking of the six models with satellite data assimilation was HBV-MSWEP+SMAPL3E, HBV-ERA5+SMAPL3E, GLEAM, SMAPL4, HBV-IMERG+SMAPL3E, and ERA5. The assimilation of SMAPL3E retrievals into HBV-IMERG improved the median R by +0.06, suggesting that data assimilation yields significant benefits at the global scale.


2021 ◽  
Author(s):  
Jawairia A. Ahmad ◽  
Barton A. Forman ◽  
Sujay V. Kumar

Abstract. A soil moisture retrieval assimilation framework is implemented across South Asia in an attempt to improve regional soil moisture estimation as well as to provide a consistent regional soil moisture dataset. This study aims to improve the spatiotemporal variability of soil moisture estimates by assimilating Soil Moisture Active Passive (SMAP) near surface soil moisture retrievals into a land surface model. The Noah-MP (v4.0.1) land surface model is run within the NASA Land Information System software framework to model regional land surface processes. NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA2) and GPM Integrated Multi-satellitE Retrievals (IMERG) provide the meteorological boundary conditions to the land surface model. Assimilation is carried out using both cumulative distribution function (CDF) corrected (DA-CDF) and uncorrected SMAP retrievals (DA-NoCDF). CDF-matching is implemented to map the statistical moments of the SMAP soil moisture retrievals to the land surface model climatology. Comparison of assimilated and model-only soil moisture estimates with publicly available in-situ measurements highlight the relative improvement in soil moisture estimates by assimilating SMAP retrievals. Across the Tibetan Plateau, DA-NoCDF reduced the mean bias and RMSE by 8.4 % and 9.4 % even though assimilation only occurred during less than 10 % of the study period due to frozen soil conditions. The best goodness-of-fit statistics were achieved for the IMERG DA-NoCDF soil moisture experiment. SMAP retrieval assimilation corrected biases associated with unmodeled hydrologic phenomenon (e.g., anthropogenic influences due to irrigation). The highest influence of assimilation was observed across croplands. Improvements in soil moisture translated into improved spatiotemporal patterns of modeled evapotranspiration, yet limited influence of assimilation was observed on states included within the carbon cycle such as gross primary production. Improvement in fine-scale modeled estimates by assimilating coarse-scale retrievals highlights the potential of this approach for soil moisture estimation over data scarce regions.


2016 ◽  
Vol 31 (1) ◽  
pp. 197-216 ◽  
Author(s):  
Jeffrey D. Massey ◽  
W. James Steenburgh ◽  
Jason C. Knievel ◽  
William Y. Y. Cheng

Abstract Operational Weather Research and Forecasting (WRF) Model forecasts run over Dugway Proving Ground (DPG) in northwest Utah, produced by the U.S. Army Test and Evaluation Command Four-Dimensional Weather System (4DWX), underpredict the amplitude of the diurnal temperature cycle during September and October. Mean afternoon [2000 UTC (1300 LST)] and early morning [1100 UTC (0400 LST)] 2-m temperature bias errors evaluated against 195 surface stations using 6- and 12-h forecasts are –1.37° and 1.66°C, respectively. Bias errors relative to soundings and 4DWX-DPG analyses illustrate that the afternoon cold bias extends from the surface to above the top of the planetary boundary layer, whereas the early morning warm bias develops in the lowest model levels and is confined to valleys and basins. These biases are largest during mostly clear conditions and are caused primarily by a regional overestimation of near-surface soil moisture in operational land surface analyses, which do not currently assimilate in situ soil moisture observations. Bias correction of these soil moisture analyses using data from 42 North American Soil Moisture Database stations throughout the Intermountain West reduces both the afternoon and early morning bias errors and improves forecasts of upper-level temperature and stability. These results illustrate that the assimilation of in situ and remotely sensed soil moisture observations, including those from the recently launched NASA Soil Moisture Active Passive (SMAP) mission, have the potential to greatly improve land surface analyses and near-surface temperature forecasts over arid regions.


2020 ◽  
Vol 148 (7) ◽  
pp. 2863-2888
Author(s):  
Liao-Fan Lin ◽  
Zhaoxia Pu

Abstract Strongly coupled land–atmosphere data assimilation has not yet been implemented into operational numerical weather prediction (NWP) systems. Up to now, upper-air measurements have been assimilated mainly in atmospheric analyses, while land and near-surface data have been assimilated mainly into land surface models. Thus, this study aims to explore the benefits of assimilating atmospheric and land surface observations within the framework of strongly coupled data assimilation. Specifically, we added soil moisture as a control state within the ensemble Kalman filter (EnKF)-based Gridpoint Statistical Interpolation (GSI) and conducted a series of numerical experiments through the assimilation of 2-m temperature/humidity and in situ surface soil moisture data along with conventional atmospheric measurements such as radiosondes into the Weather Research and Forecasting (WRF) Model with the Noah land surface model. The verification against in situ measurements and analyses show that compared to the assimilation of conventional data, adding soil moisture as a control state and assimilating 2-m humidity can bring additional benefits to analyses and forecasts. The impact of assimilating 2-m temperature (surface soil moisture) data is positive mainly on the temperature (soil moisture) analyses but on average marginal for other variables. On average, below 750 hPa, verification against the NCEP analysis indicates that the respective RMSE reduction in the forecasts of temperature and humidity is 5% and 2% for assimilating conventional data; 10% and 5% for including soil moisture as a control state; and 16% and 11% for simultaneously adding soil moisture as a control state and assimilating 2-m humidity data.


2015 ◽  
Vol 19 (9) ◽  
pp. 3845-3856 ◽  
Author(s):  
F. Todisco ◽  
L. Brocca ◽  
L. F. Termite ◽  
W. Wagner

Abstract. The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008–2013. The results showed that including soil moisture observations in the event rainfall–runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha−1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.


2020 ◽  
Vol 12 (17) ◽  
pp. 2861
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Jicheng Liu

Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


Sign in / Sign up

Export Citation Format

Share Document