scholarly journals Regional Soil Moisture Biases and Their Influence on WRF Model Temperature Forecasts over the Intermountain West

2016 ◽  
Vol 31 (1) ◽  
pp. 197-216 ◽  
Author(s):  
Jeffrey D. Massey ◽  
W. James Steenburgh ◽  
Jason C. Knievel ◽  
William Y. Y. Cheng

Abstract Operational Weather Research and Forecasting (WRF) Model forecasts run over Dugway Proving Ground (DPG) in northwest Utah, produced by the U.S. Army Test and Evaluation Command Four-Dimensional Weather System (4DWX), underpredict the amplitude of the diurnal temperature cycle during September and October. Mean afternoon [2000 UTC (1300 LST)] and early morning [1100 UTC (0400 LST)] 2-m temperature bias errors evaluated against 195 surface stations using 6- and 12-h forecasts are –1.37° and 1.66°C, respectively. Bias errors relative to soundings and 4DWX-DPG analyses illustrate that the afternoon cold bias extends from the surface to above the top of the planetary boundary layer, whereas the early morning warm bias develops in the lowest model levels and is confined to valleys and basins. These biases are largest during mostly clear conditions and are caused primarily by a regional overestimation of near-surface soil moisture in operational land surface analyses, which do not currently assimilate in situ soil moisture observations. Bias correction of these soil moisture analyses using data from 42 North American Soil Moisture Database stations throughout the Intermountain West reduces both the afternoon and early morning bias errors and improves forecasts of upper-level temperature and stability. These results illustrate that the assimilation of in situ and remotely sensed soil moisture observations, including those from the recently launched NASA Soil Moisture Active Passive (SMAP) mission, have the potential to greatly improve land surface analyses and near-surface temperature forecasts over arid regions.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8371
Author(s):  
Irina Ontel ◽  
Anisoara Irimescu ◽  
George Boldeanu ◽  
Denis Mihailescu ◽  
Claudiu-Valeriu Angearu ◽  
...  

This paper will assess the sensitivity of soil moisture anomaly (SMA) obtained from the Soil water index (SWI) product Metop ASCAT, to identify drought in Romania. The SWI data were converted from relative values (%) to absolute values (m3 m−3) using the soil porosity method. The conversion results (SM) were validated using soil moisture in situ measurements from ISMN at 5 cm depths (2015–2020). The SMA was computed based on a 10 day SWI product, between 2007 and 2020. The analysis was performed for the depths of 5 cm (near surface), 40 cm (sub surface), and 100 cm (root zone). The standardized precipitation index (SPI), land surface temperature anomaly (LST anomaly), and normalized difference vegetation index anomaly (NDVI anomaly) were computed in order to compare the extent and intensity of drought events. The best correlations between SM and in situ measurements are for the stations located in the Getic Plateau (Bacles (r = 0.797) and Slatina (r = 0.672)), in the Western Plain (Oradea (r = 0.693)), and in the Moldavian Plateau (Iasi (r = 0.608)). The RMSE were between 0.05 and 0.184. Furthermore, the correlations between the SMA and SPI, the LST anomaly, and the NDVI anomaly were significantly registered in the second half of the warm season (July–September). Due to the predominantly agricultural use of the land, the results can be useful for the management of water resources and irrigation in regions frequently affected by drought.


2017 ◽  
Vol 8 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Ramchandra Karki ◽  
Shabeh ul Hasson ◽  
Lars Gerlitz ◽  
Udo Schickhoff ◽  
Thomas Scholten ◽  
...  

Abstract. Mesoscale dynamical refinements of global climate models or atmospheric reanalysis have shown their potential to resolve intricate atmospheric processes, their land surface interactions, and subsequently, realistic distribution of climatic fields in complex terrains. Given that such potential is yet to be explored within the central Himalayan region of Nepal, we investigate the skill of the Weather Research and Forecasting (WRF) model with different spatial resolutions in reproducing the spatial, seasonal, and diurnal characteristics of the near-surface air temperature and precipitation as well as the spatial shifts in the diurnal monsoonal precipitation peak over the Khumbu (Everest), Rolwaling, and adjacent southern areas. Therefore, the ERA-Interim (0.75°) reanalysis has been dynamically refined to 25, 5, and 1 km (D1, D2, and D3) for one complete hydrological year (October 2014–September 2015), using the one-way nested WRF model run with mild nudging and parameterized convection for the outer but explicitly resolved convection for the inner domains. Our results suggest that D3 realistically reproduces the monsoonal precipitation, as compared to its underestimation by D1 but overestimation by D2. All three resolutions, however, overestimate precipitation from the westerly disturbances, owing to simulating anomalously higher intensity of few intermittent events. Temperatures are generally reproduced well by all resolutions; however, winter and pre-monsoon seasons feature a high cold bias for high elevations while lower elevations show a simultaneous warm bias. Unlike higher resolutions, D1 fails to realistically reproduce the regional-scale nocturnal monsoonal peak precipitation observed in the Himalayan foothills and its diurnal shift towards high elevations, whereas D2 resolves these characteristics but exhibits a limited skill in reproducing such a peak on the river valley scale due to the limited representation of the narrow valleys at 5 km resolution. Nonetheless, featuring a substantial skill over D1 and D2, D3 simulates almost realistic shapes of the seasonal and diurnal precipitation and the peak timings even on valley scales. These findings clearly suggest an added value of the convective-scale resolutions in realistically resolving the topoclimates over the central Himalayas, which in turn allows simulating their interactions with the synoptic-scale weather systems prevailing over high Asia.


2014 ◽  
Vol 15 (4) ◽  
pp. 1473-1485 ◽  
Author(s):  
Susan Stillman ◽  
Jason Ninneman ◽  
Xubin Zeng ◽  
Trenton Franz ◽  
Russell L. Scott ◽  
...  

Abstract Soil moisture is important for many applications, but its measurements are lacking globally and even regionally. The Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona has measured near-surface 5-cm soil moisture with 19 in situ probes since 2002 within its 150 km2 area. Using various criteria to identify erroneous data, it is found that in any given period from 1 July to 30 September from 2002 to 2011, 13–17 of these probes were producing reasonable data, and this is sufficient to estimate area-averaged seasonal soil moisture. A soil water balance model is then developed using rainfall as its only input to spatially extrapolate soil moisture estimates to the 88 rain gauges located within the watershed and to extend the measurement period to 56 years. The model is calibrated from 2002 to 2011 so that the daily in situ and modeled soil moisture time series have a high average correlation of 0.89 and a root-mean-square deviation of 0.032 m3 m−3. By interpolating modeled soil moisture from the 88 rain gauges to a 100-m gridded domain over WGEW, it is found that spatial variability often increases when 88 (rather than 13–17) estimates are taken. While no trend in the spatial average surface soil moisture is found, large variability in the spatial average soil moisture from 1 July to 30 September is observed from year to year, ranging from 0.05 to 0.09 m3 m−3. In addition to spatiotemporal analysis of WGEW, this gridded soil moisture product from 1956 to 2011 can be used for validation of satellite-based and reanalysis products and land surface models.


2020 ◽  
Vol 148 (7) ◽  
pp. 2863-2888
Author(s):  
Liao-Fan Lin ◽  
Zhaoxia Pu

Abstract Strongly coupled land–atmosphere data assimilation has not yet been implemented into operational numerical weather prediction (NWP) systems. Up to now, upper-air measurements have been assimilated mainly in atmospheric analyses, while land and near-surface data have been assimilated mainly into land surface models. Thus, this study aims to explore the benefits of assimilating atmospheric and land surface observations within the framework of strongly coupled data assimilation. Specifically, we added soil moisture as a control state within the ensemble Kalman filter (EnKF)-based Gridpoint Statistical Interpolation (GSI) and conducted a series of numerical experiments through the assimilation of 2-m temperature/humidity and in situ surface soil moisture data along with conventional atmospheric measurements such as radiosondes into the Weather Research and Forecasting (WRF) Model with the Noah land surface model. The verification against in situ measurements and analyses show that compared to the assimilation of conventional data, adding soil moisture as a control state and assimilating 2-m humidity can bring additional benefits to analyses and forecasts. The impact of assimilating 2-m temperature (surface soil moisture) data is positive mainly on the temperature (soil moisture) analyses but on average marginal for other variables. On average, below 750 hPa, verification against the NCEP analysis indicates that the respective RMSE reduction in the forecasts of temperature and humidity is 5% and 2% for assimilating conventional data; 10% and 5% for including soil moisture as a control state; and 16% and 11% for simultaneously adding soil moisture as a control state and assimilating 2-m humidity data.


2017 ◽  
Author(s):  
Ramchandra Karki ◽  
Shabeh Hasson ◽  
Lars Gerlitz ◽  
Udo Schickhoff ◽  
Thomas Scholten ◽  
...  

Abstract. Mesoscale dynamical refinements of global climate models or atmospheric reanalysis have shown their potential to resolve the intricate atmospheric processes, their land surface interactions, and subsequently, realistic distribution of climatic fields in complex terrains. Given that such potential is yet to be explored within the central Himalayan region of Nepal, we investigate the skill of the Weather Research and Forecasting (WRF) model with different spatial resolutions in reproducing the spatial, seasonal and diurnal characteristics of the near-surface air temperature and precipitation, as well as, the spatial shifts in the diurnal monsoonal precipitation peak over the Khumbu (Everest), Rolwaling and adjacent southern areas. Therefore, the ERA-Interim (0.75°) reanalysis has been dynamically refined to 25, 5 and 1 km (D1, D2 and D3) for one complete hydrological year (Oct 2014–Sep 2015), using the one-way nested WRF model run with mild-nudging and parameterized convection for the outer but explicitly resolved convection for the inner domains. Our results suggest that D3 realistically reproduces the monsoonal precipitation, as compared to its underestimation by D1 but overestimation by D2. All three resolutions however overestimate precipitation from the westerly disturbances, owing to simulating anomalously higher intensity of few intermittent events. Temperatures are though generally well reproduced by all resolutions, winter and pre-monsoon seasons feature a high cold bias for high elevations while lower show a simultaneous warm bias. Contrary to higher resolutions, D1 fails to realistically reproduce the regional-scale nocturnal monsoonal peak precipitation observed at the Himalayan foothills and its diurnal shift towards high elevations, whereas D2 resolves these characteristics but exhibits a limited skill in reproducing such peak at the river valley scale due to the limited representation of the narrow valleys at 5 km resolution. Nonetheless, featuring a substantial skill over D1 and D2, D3 simulates almost realistic shapes of the seasonal and diurnal precipitation and the peak timings even at valley scales. These findings clearly suggest an added value of the convective scale resolutions in realistically resolving the topo-climates over the central Himalaya, which in turn allow simulating their interactions with the synoptic scale weather systems prevailing over High Asia.


2020 ◽  
Vol 12 (17) ◽  
pp. 2861
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Jicheng Liu

Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


2021 ◽  
Author(s):  
Stefano Materia ◽  
Constantin Ardilouze ◽  
Chloé Prodhomme ◽  
Markus G. Donat ◽  
Marianna Benassi ◽  
...  

AbstractLand surface and atmosphere are interlocked by the hydrological and energy cycles and the effects of soil water-air coupling can modulate near-surface temperatures. In this work, three paired experiments were designed to evaluate impacts of different soil moisture initial and boundary conditions on summer temperatures in the Mediterranean transitional climate regime region. In this area, evapotranspiration is not limited by solar radiation, rather by soil moisture, which therefore controls the boundary layer variability. Extremely dry, extremely wet and averagely humid ground conditions are imposed to two global climate models at the beginning of the warm and dry season. Then, sensitivity experiments, where atmosphere is alternatively interactive with and forced by land surface, are launched. The initial soil state largely affects summer near-surface temperatures: dry soils contribute to warm the lower atmosphere and exacerbate heat extremes, while wet terrains suppress thermal peaks, and both effects last for several months. Land-atmosphere coupling proves to be a fundamental ingredient to modulate the boundary layer state, through the partition between latent and sensible heat fluxes. In the coupled runs, early season heat waves are sustained by interactive dry soils, which respond to hot weather conditions with increased evaporative demand, resulting in longer-lasting extreme temperatures. On the other hand, when wet conditions are prescribed across the season, the occurrence of hot days is suppressed. The land surface prescribed by climatological precipitation forcing causes a temperature drop throughout the months, due to sustained evaporation of surface soil water. Results have implications for seasonal forecasts on both rain-fed and irrigated continental regions in transitional climate zones.


2018 ◽  
Vol 22 (10) ◽  
pp. 5341-5356 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Jana Kolassa ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Pierre Gentine

Abstract. Characterizing soil moisture at spatiotemporal scales relevant to land surface processes (i.e., of the order of 1 km) is necessary in order to quantify its role in regional feedbacks between the land surface and the atmospheric boundary layer. Moreover, several applications such as agricultural management can benefit from soil moisture information at fine spatial scales. Soil moisture estimates from current satellite missions have a reasonably good temporal revisit over the globe (2–3-day repeat time); however, their finest spatial resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite has estimated soil moisture at two different spatial scales of 36 and 9 km since April 2015. In this study, we develop a neural-network-based downscaling algorithm using SMAP observations and disaggregate soil moisture to 2.25 km spatial resolution. Our approach uses the mean monthly Normalized Differenced Vegetation Index (NDVI) as ancillary data to quantify the subpixel heterogeneity of soil moisture. Evaluation of the downscaled soil moisture estimates against in situ observations shows that their accuracy is better than or equal to the SMAP 9 km soil moisture estimates.


Sign in / Sign up

Export Citation Format

Share Document