scholarly journals Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998

2017 ◽  
Vol 18 (6) ◽  
pp. 1617-1641 ◽  
Author(s):  
Pingping Xie ◽  
Robert Joyce ◽  
Shaorong Wu ◽  
Soo-Hyun Yoo ◽  
Yelena Yarosh ◽  
...  

Abstract The Climate Prediction Center (CPC) morphing technique (CMORPH) satellite precipitation estimates are reprocessed and bias corrected on an 8 km × 8 km grid over the globe (60°S–60°N) and in a 30-min temporal resolution for an 18-yr period from January 1998 to the present to form a climate data record (CDR) of high-resolution global precipitation analysis. First, the purely satellite-based CMORPH precipitation estimates (raw CMORPH) are reprocessed. The integration algorithm is fixed and the input level 2 passive microwave (PMW) retrievals of instantaneous precipitation rates are from identical versions throughout the entire data period. Bias correction is then performed for the raw CMORPH through probability density function (PDF) matching against the CPC daily gauge analysis over land and through adjustment against the Global Precipitation Climatology Project (GPCP) pentad merged analysis of precipitation over ocean. The reprocessed, bias-corrected CMORPH exhibits improved performance in representing the magnitude, spatial distribution patterns, and temporal variations of precipitation over the global domain from 60°S to 60°N. Bias in the CMORPH satellite precipitation estimates is almost completely removed over land during warm seasons (May–September), while during cold seasons (October–April) CMORPH tends to underestimate the precipitation due to the less-than-desirable performance of the current-generation PMW retrievals in detecting and quantifying snowfall and cold season rainfall. An intercomparison study indicated that the reprocessed, bias-corrected CMORPH exhibits consistently superior performance than the widely used TRMM 3B42 (TMPA) in representing both daily and 3-hourly precipitation over the contiguous United States and other global regions.

2010 ◽  
Vol 11 (2) ◽  
pp. 405-420 ◽  
Author(s):  
Sean Swenson

Abstract This study compares cold-season, high-latitude precipitation estimates from two global, merged satellite–gauge precipitation analyses—Global Precipitation Climatology Project (GPCP) and Climate Prediction Center Merged Analysis of Precipitation (CMAP)—to total water storage anomalies produced from the Gravity Recovery and Climate Experiment (GRACE). In general, spatial patterns and interannual variability are highly correlated between the datasets, although significant differences are also observed. Differences vary by region but typically increase at higher latitudes. Furthermore, results indicate that the gauge undercatch correction used by GPCP may be overestimated. These comparisons may be useful for assessing precipitation estimates over large regions, where in situ gauge networks may be sparse.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Phu Nguyen ◽  
Matin Rahnamay Naeini ◽  
Kuolin Hsu ◽  
Dan Braithwaite ◽  
...  

AbstractAccurate long-term global precipitation estimates, especially for heavy precipitation rates, at fine spatial and temporal resolutions is vital for a wide variety of climatological studies. Most of the available operational precipitation estimation datasets provide either high spatial resolution with short-term duration estimates or lower spatial resolution with long-term duration estimates. Furthermore, previous research has stressed that most of the available satellite-based precipitation products show poor performance for capturing extreme events at high temporal resolution. Therefore, there is a need for a precipitation product that reliably detects heavy precipitation rates with fine spatiotemporal resolution and a longer period of record. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) is designed to address these limitations. This dataset provides precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to present over the global domain of 60°S to 60°N. Evaluations of PERSIANN-CCS-CDR and PERSIANN-CDR against gauge and radar observations show the better performance of PERSIANN-CCS-CDR in representing the spatiotemporal resolution, magnitude, and spatial distribution patterns of precipitation, especially for extreme events.


2018 ◽  
Author(s):  
Νικόλαος Μπαρτσώτας

Ο υετός αποτελεί θεμελιώδη παράμετρο για ένα ευρύτατο φάσμα ανθρώπινων δραστηριοτήτων. Τόσο η έλλειψη όσο και οι υπερβολικές του ποσότητες προκαλούν σημαντικές συνέπειες και απειλούν ανθρώπινες ζωές και υποδομές. Η αβεβαιότητα που εξακολουθεί να υπάρχει στην πρόγνωση και επισκόπησή του, έχει σημαντικότατες προεκτάσεις στην γεωργία, τις μεταφορές, την αξιοποίηση υδάτινων πόρων καθώς και την παραγωγή ενέργειας από ανανεώσιμες πηγές. Σε ακραίες εκδοχές φαινομένων υετού, όπως οι πολύ ισχυρές καταιγίδες που συνοδεύονται από ηλεκτρικά φαινόμενα, η αβεβαιότητα αυτή καθίσταται ισχυρότερη. Αυτού του είδους οι καταιγίδες αναπτύσσονται σε πολύ μικρές χωρικές και χρονικές κλίμακες, χαρακτηριστικό το οποίο ανάγει την πρόγνωσή τους σε ιδιαίτερα απαιτητική διαδικασία.Η απαραίτητη πληροφορία είναι επί του παρόντος αδύνατον να προκύψει από μία και μόνο πηγή μέτρησης ή έμμεσης εκτίμησης του υετού, καθώς έκαστη συνοδεύεται από συγκεκριμένους περιορισμούς. Καθίστανται έτσι επιτακτική η ανάγκη προς μια συνδυαστική προσέγγιση. Η συγκεκριμένη διδακτορική διατριβή συνεισφέρει στη δημιουργία καλύτερων εκτιμήσεων υετού πάνω από περιοχές έντονου αναγλύφου, συνδυάζοντας αποτελεσματικά τα επιμέρους θετικά των διαθέσιμων πηγών πληροφορίας. Μετρήσεις από όργανα τηλεπισκόπησης (μετεωρολογικά ραντάρ και δορυφόροι), παρατηρήσεις από δίκτυα βροχομέτρων και ένα πλήθος αριθμητικών μοντέλων πρόγνωσης (ατμοσφαιρικό, υδρολογικό, μοντέλο διάχυσης σωματιδίων) επιστρατεύονται προς αυτό το σκοπό.Μια νέα τεχνική προσαρμογής δορυφορικών μετρήσεων αναπτύχθηκε στα πλαίσια αυτής της διατριβής. Σε αυτή, τα δορυφορικά δεδομένα αξιοποιούνται ως προς την εκτίμηση της χωροχρονικής εξέλιξης των καταιγίδων, ενώ σε ότι αφορά την ποσότητα του υετού, οι εκτιμήσεις προσαρμόζονται στις αντίστοιχες του αριθμητικών μοντέλων πρόγνωσης. Κατ’ αυτόν τον τρόπο, η αξιόπιστη χωροχρονική επισκόπηση από τους δορυφόρους διατηρείται ενώ οι συχνά εσφαλμένες ποσότητες υετού των δορυφορικών οργάνων πάνω από ορεινές περιοχές διορθώνονται με τη χρήση των ατμοσφαιρικών προσομοιώσεων. Η διόρθωση των δορυφορικών δεδομένων λαμβάνει χώρα μέσω μιας μεθόδου πυκνότητας πιθανότητας. Η αξιολόγηση των πρωτογενών δορυφορικών δεδομένων, των αριθμητικών προσομοιώσεων και των τελικών υβριδικών προϊόντων γίνεται έναντι σε πυκνά δίκτυα βροχομέτρων και πεδία από διαθέσιμα μετεωρολογικά ραντάρ. Λαμβάνει δε χώρα σε τρεις ορεινές περιοχές με διαφορετικά χαρακτηριστικά: δύο μέσων γεωγραφικών πλατών (Άλπεις και Βραχώδη Όρη) και μια υποτροπική (Αιθιοπία).Οι προσομοιώσεις των αριθμητικών μοντέλων υποδεικνύουν τη φύση των περιορισμών στην ανίχνευση του υετού από τα δορυφορικά όργανα. Μια μικροφυσική διερεύνηση λαμβάνει χώρα και οι ομοιότητες που παρουσιάζουν οι εν λόγω καταιγίδες στις περιπτώσεις όπου η δορυφορική ανίχνευση εμφανίζει μεγάλες αποκλίσεις από τις παρατηρήσεις σχολιάζονται διεξοδικά. Παράλληλα, παρουσιάζεται μια εκτίμηση του οφέλους που μπορεί να προκύψει στο άμεσο μέλλον από την υιοθέτηση πολύ λεπτομερών χωρικών αναλύσεων στα αριθμητικά μοντέλα πρόγνωσης. Αποτελέσματα από προσομοιώσεις σε χωρικές κλίμακες μικρότερες του 1 χιλιομέτρου (σ.σ.: έως και 250 μέτρα) συγκρίνονται με αντίστοιχα από κλίμακες που αποτελούν τον τρέχοντα κανόνα στις μετεωρολογικές υπηρεσίες (1 και 4 χιλιόμετρα). Οι επιπτώσεις που προκαλούν αυτές οι διαφορές στην εκτίμηση του υετού από το ατμοσφαιρικό μοντέλο στην υδρολογία και συγκεκριμένα στην απορροή των υδάτων εξετάζονται μέσω αντίστοιχων προσομοιώσεων με υδρολογικό μοντέλο.Για τις ανάγκες της διατριβής χρησιμοποιήθηκαν ένα εξελιγμένο ατμοσφαιρικό αριθμητικό μοντέλο (RAMS/ICLAMS), ένα υδρολογικό μοντέλο (CREST) καθώς κι ένα λανγκρανζιανό μοντέλο διασποράς-διάχυσης (HYPACT). Το πρώτο καθόρισε την υετίσιμη ποσότητα σε κάθε καταιγίδα και παρείχε την πληροφορία για περαιτέρω ανάλυση σε επίπεδο μικροφυσικής νεφών, το δεύτερο εκτίμησε τις απορροές που προέκυψαν από τις ατμοσφαιρικές προσομοιώσεις και το τρίτο χρησίμευσε στον καθορισμό της προέλευσης των υγρών αερίων μαζών πάνω από περιοχές όπου η βιβλιογραφία δεν ήταν ιδιαίτερα εκτεταμένη. Δυο δορυφορικά προϊόντα, που βασίζονται σε διαφορετικές τεχνικές ανίχνευσης και συγκεκριμένα από αισθητήρες υπέρυθρου (IR) και μικροκυμάτων (PMW) χρησιμοποιήθηκαν προκειμένου να υποδείξουν τους περιορισμούς που χαρακτηρίζουν την κάθε μέθοδο ανίχνευσης πάνω από περιοχές έντονου αναγλύφου. Αμφότερα είναι προϊόντα υψηλής χωρικής ανάλυσης (4 και 8 χιλιόμετρα αντίστοιχα).Τα αποτελέσματα εμφανίζουν οφέλη από τις λεπτομερείς χωρικές κλίμακες των προσομοιώσεων, τόσο στις ποσότητες του υετού, στη λεπτομερέστερη χωρική του κατανομή, όσο και την ακριβέστερη εκτίμηση της απορροής στη συνέχεια. Οι δορυφορικές μετρήσεις εμφανίζουν μια ξεκάθαρη τάση υποεκτίμησης του υετού πάνω από περιοχές έντονου αναγλύφου. Τα διορθωμένα δορυφορικά προϊόντα που προέκυψαν από την προτεινόμενη μέθοδο, υπερτερούν έναντι των πρωτογενών στη στατιστική ανάλυση και στις δύο περιοχές εφαρμογής. Σε επίπεδο μικροφυσικών ομοιοτήτων μεταξύ των περιπτώσεων ανεπαρκούς ανίχνευσης από τα δορυφορικά όργανα, παρατηρήθηκαν μικρές συγκεντρώσεις σωματιδίων πάγου και νεφικοί σχηματισμοί με περιορισμένη κατακόρυφη ανάπτυξη. Η διόρθωση των δορυφορικών παρατηρήσεων μέσω των αριθμητικών προσομοιώσεων εμφανίζεται ως μια αξιόπιστη εναλλακτική σε περιοχές όπου οι παρατηρήσεις δεν είναι επαρκείς προς εξυπηρέτηση αυτού του σκοπού.Η συνεισφορά της παρούσης διατριβής έγκειται αφενός στην προετοιμασία του εδάφους για μελλοντικά υβριδικά προϊόντα υετού, αφετέρου στην ανίχνευση των μικροφυσικών ομοιοτήτων που εμφανίζουν οι καταιγίδες οι οποίες δεν ανιχνεύονται ικανοποιητικά από τα δορυφορικά όργανα. Το τελευταίο μπορεί να καθορίσει σημαντικά την ανάπτυξη των σύγχρονων αλγορίθμων ανίχνευσης από τους παθητικούς αισθητήρες μικροκυμάτων. Τέλος, η εφαρμογή της προτεινόμενης μεθοδολογίας σε ψευδο-επιχειρησιακή βάση κατά τη διάρκεια ενός ιστορικού πλυμμηρικού φαινομένου, παρέχει μια εκτίμηση της επιχειρησιακής εφαρμοσιμότητας και του συγκριτικού οφέλους που μπορεί να προκύψει από την υιοθέτηση της συγκεκριμένης μεθόδου σε συστήματα έγκαιρης πρόγνωσης και πρόληψης πλημμυρών.


2020 ◽  
Vol 12 (19) ◽  
pp. 3133
Author(s):  
Lu Zhang ◽  
Zhuohang Xin ◽  
Huicheng Zhou

Recent developments of satellite precipitation products provide an unprecedented opportunity for better precipitation estimation, and thus broaden hydrological application. However, due to the errors and uncertainties of satellite products, a thorough validation is usually required before putting into the real hydrological application. As such, this study aims to provide a comprehensive evaluation on the performances of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) 3B42V7 and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), as well as their adequacies in simulating hydrological processes in a semi-humid region in the northeastern China. It was found that TMPA 3B42V7 showed a superior performance at the daily and monthly time scales, and had a favorable capture of the rainfall-intensity distribution. Intra-annual comparisons indicated a better representation of TMPA 3B42V7 from January to September, whereas PERSIANN-CDR was more reliable from October to December. The Soil and Water Assessment Tool (SWAT) driven by gauge precipitation data performed excellently with NSE > 0.9, while the performances of TMPA 3B42V7- and PERSIANN-CDR-based models are satisfactory with NSE > 0.5. The performances varied under different flow levels and hydrological years. Water balance analysis indicated a better performance of TMPA 3B42V7 in simulating the hydrological processes, including evapotranspiration, groundwater recharge and total runoff. The runoff compositions (i.e., base flow, subsurface flow, and surface flow) driven by TMPA 3B42V7 were more accordant with the actual hydrological features. This study will not only help recognize the potential satellite precipitation products for local water resources management, but also be a reference for the poor-gauged regions with similar hydrologic and climatic conditions around the world, especially the northeastern China and western Russia.


2018 ◽  
Vol 10 (10) ◽  
pp. 1520 ◽  
Author(s):  
Adrianos Retalis ◽  
Dimitris Katsanos ◽  
Filippos Tymvios ◽  
Silas Michaelides

Global Precipitation Measurement (GPM) high-resolution product is validated against rain gauges over the island of Cyprus for a three-year period, starting from April 2014. The precipitation estimates are available in both high temporal (half hourly) and spatial (10 km) resolution and combine data from all passive microwave instruments in the GPM constellation. The comparison performed is twofold: first the GPM data are compared with the precipitation measurements on a monthly basis and then the comparison focuses on extreme events, recorded throughout the first 3 years of GPM’s operation. The validation is based on ground data from a dense and reliable network of rain gauges, also available in high temporal (hourly) resolution. The first results show very good correlation regarding monthly values; however, the correspondence of GPM in extreme precipitation varies from “no correlation” to “high correlation”, depending on case. This study aims to verify the GPM rain estimates, since such a high-resolution dataset has numerous applications, including the assimilation in numerical weather prediction models and the study of flash floods with hydrological models.


2019 ◽  
Vol 11 (6) ◽  
pp. 697 ◽  
Author(s):  
Fenglin Xu ◽  
Bin Guo ◽  
Bei Ye ◽  
Qia Ye ◽  
Huining Chen ◽  
...  

Accurate estimation of high-resolution satellite precipitation products like Global Precipitation Measurement (GPM) and Tropical Rainfall Measuring Mission (TRMM) is critical for hydrological and meteorological research, providing a benchmark for the continued development and future improvement of these products. This study aims to comprehensively evaluate the Integrated Multi-Satellite Retrievals for GPM (IMERG) and TRMM 3B42V7 products at multiple temporal scales from 1 January 2015 to 31 December 2017 over the Huang-Huai-Hai Plain in China, using daily precipitation data from 59 meteorological stations. Three commonly used statistical metrics (CC, RB, and RMSE) are adopted to quantitatively verify the accuracy of two satellite precipitation products. The assessment also takes into account the precipitation detection capability (POD, FAR, CSI, and ACC) and frequency of different precipitation intensities. The results show that the IMERG and 3B42V7 present strong correlation with meteorological stations observations at annual and monthly scales (CC > 0.90), whereas moderate at the daily scale (CC = 0.76 and 0.69 for IMERG and 3B42V7, respectively). The spatial variability of the annual and seasonal precipitation is well captured by these two satellite products. And spatial patterns of precipitation gradually decrease from south to north over the Huang-Huai-Hai Plain. Both IMERG and 3B42V7 products overestimate precipitation compared with the station observations, of which 3B42V7 has a lower degree of overestimation. Relative to the IMERG, annual precipitation estimates from 3B42V7 show lower RMSE (118.96 mm and 142.67 mm, respectively), but opposite at the daily, monthly, and seasonal scales. IMERG has a better precipitation detection capability than 3B42V7 (POD = 0.83 and 0.67, respectively), especially when detecting trace and solid precipitation. The two precipitation products tend to overestimate moderate (2–10 mm/d) and heavy (10–50 mm/d) precipitation events, but underestimate violent (>50 mm/d) precipitation events. The IMERG is not found capable to detecting precipitation events of different frequencies more precisely. In general, the accuracy of IMERG is better than 3B42V7 product in the Huang-Huai-Hai Plain. The IMERG satellite precipitation product with higher temporal and spatial resolutions can be regarded a reliable data sources in studying hydrological and climatic research.


Author(s):  
Luiz Octavio Fabricio dos Santos ◽  
Carlos Alexandre Santos Querino ◽  
Juliane Kayse Albuquerque da Silva Querino ◽  
Altemar Lopes Pedreira Junior ◽  
Aryanne Resende de Melo Moura ◽  
...  

Rainfall is a meteorological variable of great importance for hydric balance and for weather studies. Rainfall estimation, carried out by satellites, has increased the climatological dataset related to precipitation. However, the accuracy of these data is questionable. This paper aimed to validate the estimates done by the Global Precipitation Measurement (GPM) satellite for the mesoregion of Southern Amazonas State, Brazil. The surface data were collected by the National Water Agency – ANA and National Institute of Meteorology – INMET, and is available at both institutions’ websites. The satellite precipitation data were accessed directly from the NASA webpage. Statistical analysis of Pearson correlation was used, as well as the Willmott’s “d” index and errors from the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error). The GPM satellite satisfactorily estimated the precipitation, once it had correlations above 73% and high Willmott coefficients (between 0.86 and 0.97). The MAE and RMSE showed values that varied from 36.50 mm to 72.49 mm and 13.81 mm to 71.76 mm, respectively. Seasonal rain variations are represented accordingly. In some cases, either an underestimation or an overestimation of the rain data was observed. In the yearly totals, a high rate of similarity between the estimated and measured values was observed. We concluded that the GPM-based multi-satellite precipitation estimates can be used, even though they are not 100% reliable. However, adjustments in calibration for the region are necessary and recommended.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 668 ◽  
Author(s):  
Leandro Salles ◽  
Frédéric Satgé ◽  
Henrique Roig ◽  
Tati Almeida ◽  
Diogo Olivetti ◽  
...  

This study assesses the performance of the new Global Precipitation Measurement (GPM)-based satellite precipitation estimates (SPEs) datasets in the Brazilian Central Plateau and compares it with the previous Tropical Rainfall Measurement Mission (TRMM)-era datasets. To do so, the Integrated Multi-satellitE Retrievals for GPM (IMERG)-v5 and the Global Satellite Mapping of Precipitation (GSMaP)-v7 were evaluated at their original 0.1° spatial resolution and for a 0.25° grid for comparison with TRMM Multi-satellite Precipitation Analysis (TMPA). The assessment was made on an annual, monthly, and daily basis for both wet and dry seasons. Overall, IMERG presents the best annual and monthly results. In both time steps, IMERG’s precipitation estimations present bias with lower magnitudes and smaller root-mean-square error. However, GSMaP performs slightly better for the daily time step based on categorical and quantitative statistical analysis. Both IMERG and GSMaP estimates are seasonally influenced, with the highest difficulty in estimating precipitation occurring during the dry season. Additionally, the study indicates that GPM-based SPEs products are capable of continuing TRMM-based precipitation monitoring with similar or even better accuracy than obtained previously with the widely used TMPA product.


2009 ◽  
Vol 48 (9) ◽  
pp. 1843-1857 ◽  
Author(s):  
David T. Bolvin ◽  
Robert F. Adler ◽  
George J. Huffman ◽  
Eric J. Nelkin ◽  
Jani P. Poutiainen

Abstract Monthly and daily products of the Global Precipitation Climatology Project (GPCP) are evaluated through a comparison with Finnish Meteorological Institute (FMI) gauge observations for the period January 1995–December 2007 to assess the quality of the GPCP estimates at high latitudes. At the monthly scale both the final GPCP combination satellite–gauge (SG) product is evaluated, along with the satellite-only multisatellite (MS) product. The GPCP daily product is scaled to sum to the monthly product, so it implicitly contains monthly-scale gauge influence, although it contains no daily gauge information. As expected, the monthly SG product agrees well with the FMI observations because of the inclusion of limited gauge information. Over the entire analysis period the SG estimates are biased low by 6% when the same wind-loss adjustment is applied to the FMI gauges as is used in the SG analysis. The interannual anomaly correlation is about 0.9. The satellite-only MS product has a lesser, but still reasonably good, interannual correlation (∼0.6) while retaining a similar bias due to the use of a climatological bias adjustment. These results indicate the value of using even a few gauges in the analysis and provide an estimate of the correlation error to be expected in the SG analysis over ocean and remote land areas where gauges are absent. The daily GPCP precipitation estimates compare reasonably well at the 1° latitude × 2° longitude scale with the FMI gauge observations in the summer with a correlation of 0.55, but less so in the winter with a correlation of 0.45. Correlations increase somewhat when larger areas and multiday periods are analyzed. The day-to-day occurrence of precipitation is captured fairly well by the GPCP estimates, but the corresponding precipitation event amounts tend to show wide variability. The results of this study indicate that the GPCP monthly and daily fields are useful for meteorological and hydrological studies but that there is significant room for improvement of satellite retrievals and analysis techniques in this region. It is hoped that the research here provides a framework for future high-latitude assessment efforts such as those that will be necessary for the upcoming satellite-based Global Precipitation Measurement (GPM) mission.


2016 ◽  
Vol 29 (21) ◽  
pp. 7773-7795 ◽  
Author(s):  
Maria Gehne ◽  
Thomas M. Hamill ◽  
George N. Kiladis ◽  
Kevin E. Trenberth

Abstract Characteristics of precipitation estimates for rate and amount from three global high-resolution precipitation products (HRPPs), four global climate data records (CDRs), and four reanalyses are compared. All datasets considered have at least daily temporal resolution. Estimates of global precipitation differ widely from one product to the next, with some differences likely due to differing goals in producing the estimates. HRPPs are intended to produce the best snapshot of the precipitation estimate locally. CDRs of precipitation emphasize homogeneity over instantaneous accuracy. Precipitation estimates from global reanalyses are dynamically consistent with the large-scale circulation but tend to compare poorly to rain gauge estimates since they are forecast by the reanalysis system and precipitation is not assimilated. Regional differences among the estimates in the means and variances are as large as the means and variances, respectively. Even with similar monthly totals, precipitation rates vary significantly among the estimates. Temporal correlations among datasets are large at annual and daily time scales, suggesting that compensating bias errors at annual and random errors at daily time scales dominate the differences. However, the signal-to-noise ratio at intermediate (monthly) time scales can be large enough to result in high correlations overall. It is shown that differences on annual time scales and continental regions are around 0.8 mm day−1, which corresponds to 23 W m−2. These wide variations in the estimates, even for global averages, highlight the need for better constrained precipitation products in the future.


Sign in / Sign up

Export Citation Format

Share Document