scholarly journals Changes in the Climatology, Structure, and Seasonality of Northeast Pacific Atmospheric Rivers in CMIP5 Climate Simulations

2017 ◽  
Vol 18 (8) ◽  
pp. 2131-2141 ◽  
Author(s):  
Michael D. Warner ◽  
Clifford F. Mass

Abstract This paper describes changes in the climatology, structure, and seasonality of cool-season atmospheric rivers influencing the U.S. West Coast by examining the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that are forced by the representative concentration pathway (RCP) 8.5 scenario. There are only slight changes in atmospheric river (AR) frequency and seasonality between historical (1970–99) and future (2070–99) periods considering the most extreme days (99th percentile) in integrated water vapor transport (IVT) along the U.S. West Coast. Changes in the 99th percentile of precipitation are only significant over the southern portion of the coast. In contrast, using the number of future days exceeding the historical 99th percentile IVT threshold produces statistically significant increases in the frequency of extreme IVT events for all winter months. The peak in future AR days appears to occur approximately one month earlier. The 10-model mean historical and end-of-century composites of extreme IVT days reflect canonical AR conditions, with a plume of high IVT extending from the coast to the southwest. The similar structure and evolution associated with ARs in the historical and future periods suggest little change in large-scale structure of such events during the upcoming century. Increases in extreme IVT intensity are primarily associated with integrated water vapor increases accompanying a warming climate. Along the southern portion of the U.S. West Coast there is less model agreement regarding the structure and intensity of ARs than along the northern portions of the coast.


Author(s):  
Jason M. Cordeira ◽  
F. Martin Ralph

AbstractThe ability to provide accurate forecasts and improve situational awareness of atmospheric rivers (ARs) is key to impact-based decision support services and applications such as forecast-informed reservoir operations. The purpose of this study is to quantify the cool-season water year skill for 2017–2020 of the NCEP Global Ensemble Forecast System forecasts of integrated water vapor transport along the U.S. West Coast commonly observed during landfalling ARs. This skill is summarized for ensemble probability-over-threshold forecasts of integrated water vapor transport magnitudes ≥250 kg m–1 s–1 (referred to as P250). The P250 forecasts near North-Coastal California at 38°N, 123°W were reliable and successful at lead times of ~8–9 days with an average success ratio >0.5 for P250 forecasts ≥50% at lead times of 8 days and Brier skill scores >0.1 at a lead time of 8–9 days. Skill and accuracy also varied as a function of latitude and event characteristics. The highest (lowest) success ratios and probability of detection values for P250 forecasts ≥50% occurred on average across northern California and Oregon (southern California), whereas the average probability of detection of more intense and longer duration landfalling ARs was 0.1–0.2 higher than weaker and shorter duration events at lead times of 3–9 days. The potential for these forecasts to enhance situational awareness may also be improved, depending on individual applications, by allowing for flexibility in the location and time of verification; the success ratios increased 10–30% at lead times of 5-to-10 days allowing for flexibility of ±1.0° latitude and ±6 hours in verification.



2017 ◽  
Vol 98 (3) ◽  
pp. 449-459 ◽  
Author(s):  
Jason M. Cordeira ◽  
F. Martin Ralph ◽  
Andrew Martin ◽  
Natalie Gaggini ◽  
J. Ryan Spackman ◽  
...  

Abstract Atmospheric rivers (ARs) are long and narrow corridors of enhanced vertically integrated water vapor (IWV) and IWV transport (IVT) within the warm sector of extra tropical cyclones that can produce heavy precipitation and flooding in regions of complex terrain, especially along the U.S. West Coast. Several field campaigns have investigated ARs under the CalWater program of field studies. The first field phase of CalWater during 2009–11 increased the number of observations of precipitation and aerosols, among other parameters, across California and sampled ARs in the coastal and near-coastal environment, whereas the second field phase of CalWater during 2014–15 observed the structure and intensity of ARs and aerosols in the coastal and offshore environment over the northeast Pacific. This manuscript highlights the forecasts that were prepared for the CalWater field campaign in 2015, and the development and use of an “AR portal” that was used to inform these forecasts. The AR portal contains archived and real-time deterministic and probabilistic gridded forecast tools related to ARs that emphasize water vapor concentrations and water vapor flux distributions over the eastern North Pacific, among other parameters, in a variety of formats derived from the National Centers for Environmental Prediction (NCEP) Global Forecast System and Global Ensemble Forecast System. The tools created for the CalWater 2015 field campaign provided valuable guidance for flight planning and field activity purposes, and they may prove useful in forecasting ARs and better anticipating hydrometeorological extremes along the U.S. West Coast.



2013 ◽  
Vol 26 (14) ◽  
pp. 4947-4961 ◽  
Author(s):  
Lin Chen ◽  
Yongqiang Yu ◽  
De-Zheng Sun

Abstract Previous evaluations of model simulations of the cloud and water vapor feedbacks in response to El Niño warming have singled out two common biases in models from phase 3 of the Coupled Model Intercomparison Project (CMIP3): an underestimate of the negative feedback from the shortwave cloud radiative forcing (SWCRF) and an overestimate of the positive feedback from the greenhouse effect of water vapor. Here, the authors check whether these two biases are alleviated in the CMIP5 models. While encouraging improvements are found, particularly in the simulation of the negative SWCRF feedback, the biases in the simulation of these two feedbacks remain prevalent and significant. It is shown that bias in the SWCRF feedback correlates well with biases in the corresponding feedbacks from precipitation, large-scale circulation, and longwave radiative forcing of clouds (LWCRF). By dividing CMIP5 models into two categories—high score models (HSM) and low score models (LSM)—based on their individual skills of simulating the SWCRF feedback, the authors further find that ocean–atmosphere coupling generally lowers the score of the simulated feedbacks of water vapor and clouds but that the LSM is more affected by the coupling than the HSM. They also find that the SWCRF feedback is simulated better in the models that have a more realistic zonal extent of the equatorial cold tongue, suggesting that the continuing existence of an excessive cold tongue is a key factor behind the persistence of the feedback biases in models.



2020 ◽  
Vol 33 (4) ◽  
pp. 1261-1281 ◽  
Author(s):  
Yaheng Tan ◽  
Francis Zwiers ◽  
Song Yang ◽  
Chao Li ◽  
Kaiqiang Deng

AbstractPerformance in simulating atmospheric rivers (ARs) over western North America based on AR frequency and landfall latitude is evaluated for 10 models from phase 5 of the Coupled Model Intercomparison Project among which the CanESM2 model performs well. ARs are classified into southern, northern, and middle types using self-organizing maps in the ERA-Interim reanalysis and CanESM2. The southern type is associated with the development and eastward movement of anomalous lower pressure over the subtropical eastern Pacific, while the northern type is linked with the eastward movement of anomalous cyclonic circulation stimulated by warm sea surface temperatures over the subtropical western Pacific. The middle type is connected with the negative phase of North Pacific Oscillation–west Pacific teleconnection pattern. CanESM2 is further used to investigate projected AR changes at the end of the twenty-first century under the representative concentration pathway 8.5 scenario. AR definitions usually reference fixed integrated water vapor or integrated water vapor transport thresholds. AR changes under such definitions reflect both thermodynamic and dynamic influences. We therefore also use a modified AR definition that isolates change from dynamic influences only. The total AR frequency doubles compared to the historical period, with the middle AR type contributing the largest increases along the coasts of Vancouver Island and California. Atmospheric circulation (dynamic) changes decrease northern AR type frequency while increasing middle AR type frequency, indicating that future changes of circulation patterns modify the direct effect of warming on AR frequency, which would increase ARs (relative to fixed thresholds) almost everywhere along the North American coastline.



2018 ◽  
Vol 19 (8) ◽  
pp. 1363-1377 ◽  
Author(s):  
Michael D. Dettinger ◽  
F. Martin Ralph ◽  
Jonathan J. Rutz

Abstract Atmospheric rivers (ARs) come in all intensities, and clear communication of risks posed by individual storms in observations and forecasts can be a challenge. Modest ARs can be characterized by the percentile rank of their integrated water vapor transport (IVT) rates compared to past ARs. Stronger ARs can be categorized more clearly in terms of return periods or, equivalently, historical probabilities that at least one AR will exceed a given IVT threshold in any given year. Based on a 1980–2016 chronology of AR landfalls on the U.S. West Coast from NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), datasets, the largest instantaneous IVTs—greater than 1700 kg m−1 s−1—have occurred in ARs making landfall between 41° and 46°N with return periods longer than 20 years. IVT values with similar return periods are smaller to the north and, especially, to the south (declining to ~750 kg m−1 s−1). The largest storm-sequence IVT totals have been centered near 42.5°N, with scatter among the top few events, and these large storm-sequence totals depend more on sequence duration than on the instantaneous IVT that went into them. Maximum instantaneous IVTs are largest in the Pacific Northwest in autumn, with largest IVT values arriving farther south as winter and spring unfold, until maximum IVTs reach Northern California in spring.



2018 ◽  
Vol 31 (19) ◽  
pp. 8039-8058 ◽  
Author(s):  
Lu Dong ◽  
L. Ruby Leung ◽  
Fengfei Song ◽  
Jian Lu

The U.S. West Coast exhibits large variability of extreme precipitation during the boreal winter season (December–February). Understanding the large-scale forcing of such variability is important for improving prediction. This motivates analyses of the roles of sea surface temperature (SST) forcing and internal atmospheric variability on extreme precipitation on the U.S. West Coast. Observations, reanalysis products, and an ensemble of Atmospheric Model Intercomparison Project (AMIP) experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed. It is found that SST forcing only accounts for about 20% of the variance of both extreme and nonextreme precipitation in winter. Under SST forcing, extreme precipitation is associated with the Pacific–North American teleconnection, while nonextreme precipitation is associated with the North Pacific Oscillation. The remaining 80% of extreme precipitation variations can be explained by internal atmospheric dynamics featuring a circumglobal wave train with a cyclonic circulation located over the U.S. West Coast. The circumglobal teleconnection manifests from the mid- to high-latitude intrinsic variability, but it can also emanate from anomalous convection over the tropical western Pacific, with stronger tropical convection over the Maritime Continent setting the stage for more extreme precipitation in winter. Whether forced by SST or internal atmospheric dynamics, atmospheric rivers are a common and indispensable feature of the large-scale environment that produces concomitant extreme precipitation along the U.S. West Coast.



2014 ◽  
Vol 142 (2) ◽  
pp. 905-921 ◽  
Author(s):  
Jonathan J. Rutz ◽  
W. James Steenburgh ◽  
F. Martin Ralph

Abstract Narrow corridors of water vapor transport known as atmospheric rivers (ARs) contribute to extreme precipitation and flooding along the West Coast of the United States, but knowledge of their influence over the interior is limited. Here, the authors use Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data, Climate Prediction Center (CPC) precipitation analyses, and Snowpack Telemetry (SNOTEL) observations to describe the characteristics of cool-season (November–April) ARs over the western United States. It is shown that AR frequency and duration exhibit a maximum along the Oregon–Washington coast, a strong transition zone upwind (west) of and over the Cascade–Sierra ranges, and a broad minimum that extends from the “high” Sierra south of Lake Tahoe eastward across the central Great Basin and into the deep interior. East of the Cascade–Sierra ranges, AR frequency and duration are largest over the interior northwest, while AR duration is large compared to AR frequency over the interior southwest. The fractions of cool-season precipitation and top-decile 24-h precipitation events attributable to ARs are largest over and west of the Cascade–Sierra ranges. Farther east, these fractions are largest over the northwest and southwest interior, with distinctly different large-scale patterns and AR orientations enabling AR penetration into each of these regions. In contrast, AR-related precipitation over the Great Basin east of the high Sierra is rare. These results indicate that water vapor depletion over major topographic barriers is a key contributor to AR decay, with ARs playing a more prominent role in the inland precipitation climatology where lower or less continuous topography facilitates the inland penetration of ARs.



Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.



Author(s):  
Terence J. Pagano ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
Hengchun Ye ◽  
F. Martin Ralph ◽  
...  

AbstractAtmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT and AIRS satellite observations are used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), and integrated water vapor transport (IVT) are analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22-38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36-52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% compared to 52% explained variance for USA West Coast). Use of an alternate static stability measure–the bulk Richardson number–yields a similar explained variance (47%). Lastly, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3%/14.7% during weak/strong IVT) than in stable conditions (0.58%/6.15%).



2018 ◽  
Vol 146 (10) ◽  
pp. 3343-3362 ◽  
Author(s):  
Kyle M. Nardi ◽  
Elizabeth A. Barnes ◽  
F. Martin Ralph

AbstractAtmospheric rivers (ARs)—narrow corridors of high atmospheric water vapor transport—occur globally and are associated with flooding and maintenance of the water supply. Therefore, it is important to improve forecasts of AR occurrence and characteristics. Although prior work has examined the skill of numerical weather prediction (NWP) models in forecasting atmospheric rivers, these studies only cover several years of reforecasts from a handful of models. Here, we expand this previous work and assess the performance of 10–30 years of wintertime (November–February) AR landfall reforecasts from the control runs of nine operational weather models, obtained from the International Subseasonal to Seasonal (S2S) Project database. Model errors along the west coast of North America at leads of 1–14 days are examined in terms of AR occurrence, intensity, and landfall location. Occurrence-based skill approaches that of climatology at 14 days, while models are, on average, more skillful at shorter leads in California, Oregon, and Washington compared to British Columbia and Alaska. We also find that the average magnitude of landfall integrated water vapor transport (IVT) error stays fairly constant across lead times, although overprediction of IVT is common at later lead times. Finally, we show that northward landfall location errors are favored in California, Oregon, and Washington, although southward errors occur more often than expected from climatology. These results highlight the need for model improvements, while helping to identify factors that cause model errors.



Sign in / Sign up

Export Citation Format

Share Document