Spectral Energy Dissipation due to Surface Wave Breaking

2012 ◽  
Vol 42 (9) ◽  
pp. 1421-1444 ◽  
Author(s):  
Leonel Romero ◽  
W. Kendall Melville ◽  
Jessica M. Kleiss

Abstract A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave breaking is presented and then used to propose a model for the spectral dependence of the breaking strength parameter b, defined in the O. M. Phillips’s statistical formulation of wave breaking dynamics. The determination of the spectral dissipation is based on closing the radiative transport equation for fetch-limited waves, measured in the Gulf of Tehuantepec Experiment, by using the measured evolution of the directional spectra with fetch, computations of the four-wave resonant interactions, and three models of the wind input source function. The spectral dependence of the breaking strength is determined from the Kleiss and Melville measurements of the breaking statistics and the semiempirical spectral energy dissipation, resulting in b = b(k, cp/u*), where k is the wavenumber and the parametric dependence is on the wave age, cp/u*. Guided by these semiempirical results, a model for b(k, cp/u*) is proposed that uses laboratory data from a variety of sources, which can be represented by b = a(S − S0)n, where S is a measure of the wave slope at breaking, a is a constant, S0 is a threshold slope for breaking, and 2.5 < n < 3 is a power law consistent with inertial wave dissipation scaling and laboratory measurements. The relationship between b(S) in the laboratory and b(k) in the field is based on the relationship between the saturation and mean square slope of the wave field. The results are discussed in the context of wind wave modeling and improved measurements of breaking in the field.

2010 ◽  
Vol 655 ◽  
pp. 217-257 ◽  
Author(s):  
ZHIGANG TIAN ◽  
MARC PERLIN ◽  
WOOYOUNG CHOI

An experimental study of energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model to simulate the dissipation due to wave breaking are reported in this paper. Measured wave surface elevations are used to examine the characteristic time and length scales associated with wave groups and local breaking waves, and to estimate and parameterize the energy dissipation and dissipation rate due to wave breaking. Numerical tests using the eddy viscosity model are performed and we find that the numerical results well capture the measured energy loss. In our experiments, three sets of characteristic time and length scales are defined and obtained: global scales associated with the wave groups, local scales immediately prior to breaking onset and post-breaking scales. Correlations among these time and length scales are demonstrated. In addition, for our wave groups, wave breaking onset predictions using the global and local wave steepnesses are found based on experimental results. Breaking time and breaking horizontal length scales are determined with high-speed imaging, and are found to depend approximately linearly on the local wave steepness. The two scales are then used to determine the energy dissipation rate, which is the ratio of the energy loss to the breaking time scale. Our experimental results show that the local wave steepness is highly correlated with the measured dissipation rate, indicating that the local wave steepness may serve as a good wave-breaking-strength indicator. To simulate the energy dissipation due to wave breaking, a simple eddy viscosity model is proposed and validated with our experimental measurements. Under the small viscosity assumption, the leading-order viscous effect is incorporated into the free-surface boundary conditions. Then, the kinematic viscosity is replaced with an eddy viscosity to account for energy loss. The breaking time and length scales, which depend weakly on wave breaking strength, are applied to evaluate the magnitude of the eddy viscosity using dimensional analysis. The estimated eddy viscosity is of the order of 10−3 m2s−1 and demonstrates a strong dependence on wave breaking strength. Numerical simulations with the eddy viscosity estimation are performed to compare to the experimental results. Good agreement as regards energy dissipation due to wave breaking and surface profiles after wave breaking is achieved, which illustrates that the simple eddy viscosity model functions effectively.


2011 ◽  
Vol 1 (32) ◽  
pp. 13 ◽  
Author(s):  
Marion Tissier ◽  
Philippe Bonneton ◽  
Fabien Marche ◽  
Florent Chazel ◽  
David Lannes

In this paper, a fully nonlinear Boussinesq model is presented and applied to the description of breaking waves and shoreline motions. It is based on Serre Green-Naghdi equations, solved using a time-splitting approach separating hyperbolic and dispersive parts of the equations. The hyperbolic part of the equations is solved using Finite-Volume schemes, whereas dispersive terms are solved using a Finite-Difference method. The idea is to switch locally in space and time to NSWE by skipping the dispersive step when the wave is ready to break, so as the energy dissipation due to wave breaking is predicted by the shock theory. This approach allows wave breaking to be handled naturally, without any ad-hoc parameterization for the energy dissipation. Extensive validations of the method are presented using laboratory data.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
D. V. Korzinin ◽  
M. N. Shtremel ◽  
◽  

Purpose. Morphodynamic system of the accumulative sandy coast can include one or more underwater bars. Position and shape of the underwater bar can reflect both seasonal changes of the coastal profile and its unidirectional movements landward and seaward. Determination of the character of the underwater bar movement under the influence of various wave conditions permits to reveal common factors of the coastal deposit multidirectional transport along the coast profile. Methods and Results. The results of field observations of morphodynamics of a section of the Baltic Spit sandy coast (600 m length) were analyzed. From May to November 2019, a series of measurements of the coastal zone relief were conducted. The obtained data were analyzed along with the wave regime parameters (reanalysis ERA5 data was used). The coastal profile of the area under study is complicated by the external underwater bar with its crest located at the depth 2.65 m, and by the internal one of a crescent shape. Conclusions. Analysis of displacement of the external underwater bar from May to November showed that this form was of a morphodynamics two-dimensional character, i.e. it possessed the same morphometric characteristics along the coast. It was revealed that the underwater bar crest was located at the depths close to those of wave breaking during the most recent relatively strong and sustainable storm. Based on this concept as well as on the available literature data on the relationship between a wave height and dynamics of an underwater bar crest, described is the landward displacement (recorded during the observation period) of the external underwater bar. Due to the field data, it was shown that the underwater bar morphodynamics was effected both by duration of individual waves and by difference between the wave parameters of a sequence of storm events.


1972 ◽  
Vol 1 (13) ◽  
pp. 20 ◽  
Author(s):  
Paul D. Komar ◽  
Michael K. Gaughan

Using a critical value for Yt> = H./ h. as a wave breaking criterion, where Hb and hb are respectively the wave breaker height and depth, applying Airy wave theory, and assuming conservation of the wave energy flux, one obtains 1/5 2 2/5 Hb = k g (TH. ) relating Hb to the wave period T and to the deep-water wave height H^ . Three sets of laboratory data and one set of field data yield k = 0.39 for the dimensionless coefficient. The relationship, based on Airy wave theory and empirically fitted to the data, is much more successful in predicting wave breaker heights than is the commonly used equation of Munk, based on solitary wave theory. In addition, the relationship is applicable over the entire practical range of wave steepness values.


2021 ◽  
Author(s):  
Adrian Callaghan

<p>Breaking waves are an important physical feature of the ocean surface and play a fundamental role in many air-sea interaction processes. Sufficiently energetic breaking waves can entrain enough air that they appear as whitecaps on the ocean surface and these are the focus of this work. Phillips (1985) presents a statistical description of the length of breaking wave crest per unit area within a breaking speed interval Λ(c), often referred to as the “lambda distribution”. Many field studies have measured Λ(c) using digital image remote sensing of the ocean surface, corroborating the theoretical work of Phillips. In conjunction with the so-called breaking strength parameter, b, defined by Duncan (1981), the fifth moment of Λ(c) has been used to quantify the energy dissipation rate of the surface breaking wave field. Within the Duncan framework, many numerical and experimental laboratory studies have shown that b is not constant but depends on the spectral and physical slope of the breaking waves, and it can vary by several orders of magnitude.</p><p>Significant effort has been made to estimate the average value of the breaking strength parameter for populations of breaking waves observed in the field, <b>. This can be achieved with measurements of Λ(c), an estimate of the wind to wave energy flux and assumptions of a stationary wave field. While several recent field studies have estimated <b> to be O(1 X 10<sup>-3</sup>), independent estimates of <b> derived from averaging values of b estimated for individual whitecaps in a given sea state have not yet been reported.</p><p>Here digital images of the sea surface are analysed and the volume-time-integral (VTI) method presented in Callaghan et al (2016) is used to estimate b on a whitecap-by-whitecap basis. The VTI method uses the time-evolving surface foam area of a whitecap together with a laboratory-determined average turbulence intensity inside a breaking wave crest, to estimate the total energy dissipated by an individual whitecap. This total energy loss can then be used to calculate the average energy dissipation rate of an individual whitecap, from which b can be estimated.</p><p>The dataset presented here consists of approximately 500 whitecaps and the range of b values estimated is distributed between 1 X 10<sup>-4</sup> to 1 X 10<sup>-2</sup>, with average values lying close to 1-2 X 10<sup>-3</sup>. This range of b values agrees well with laboratory results amassed over decades of experimental research. Furthermore, the average values of 1-2 X 10<sup>-3 </sup>agree very well with two recent <b> values reported in Zappa et al. (2016) and Korinenko et al. (2020). These results suggest that the VTI method can be a useful tool to remotely estimate the energy dissipation, and its rate, of individual whitecaps in the field using above-water digital image remote sensing.</p>


1994 ◽  
Vol 72 (03) ◽  
pp. 426-429 ◽  
Author(s):  
S Kitchen ◽  
I D Walker ◽  
T A L Woods ◽  
F E Preston

SummaryWhen the International Normalised Ratio (INR) is used for control of oral anticoagulant therapy the same result should be obtained irrespective of the laboratory reagent used. However, in the UK National External Quality Assessment Scheme (NEQAS) for Blood Coagulation INRs determined using different reagents have been significantly different.For 18 NEQAS samples Manchester Reagent (MR) was associated with significantly lower INRs than those obtained using Diagen Activated (DA, p = 0.0004) or Instrumentation Laboratory PT-Fib HS (IL, p = 0.0001). Mean INRs for this group were 3.15, 3.61, and 3.65 for MR, DA, and IL respectively. For 61 fresh samples from warfarin-ised patients with INRs of greater than 3.0 the relationship between thromboplastins in respect of INR was similar to that observed for NEQAS data. Thus INRs obtained with MR were significantly lower than with DA or IL (p <0.0001). Mean INRs for this group were 4.01, 4.40, and 4.59 for MR, DA, and IL respectively.We conclude that the differences between INRs measured with the thromboplastins studied here are sufficiently great to influence patient management through warfarin dosage schedules, particularly in the upper therapeutic range of INR. There is clearly a need to address the issues responsible for the observed discrepancies.


2016 ◽  
pp. 137-142
Author(s):  
V.O. Benyuk ◽  
◽  
V.M. Goncharenko ◽  
T.R. Nykoniuk ◽  
◽  
...  

The objective: to еxplore the relationship between the activity of endometrial proliferation and the state of the local immune response in the uterus in the conditions berprestasi process. Patients and methods. Examined 228 women of reproductive and perimenopausal age with endometrial pathology using ultrasound and then performing hysteroresectoscopy. Determination of the concentrations of the cytokines IL-1, IL-2, IL-6 and TNF was performed by solid phase ELISA. Results. Found a trend that confirms the loss of sensitivity to hormones at the stage of malignancy of the endometrium and can be used as diagnostic determinants in determining the nature of intrauterine pathology and criterion of the effectiveness of conservative therapy. Conclusion. Improving etiopatogenetice approach to the therapy of hyperplastic proce.sses of endometrium with determination of receptor phenotype of the endometrium is a research direction in modern gynecology, which will help to improve the results of treatment and prevention of intrauterine pathology. Key words: endometrial hyperplasia,the receptors for progesterone and estrogen, immunohistochemical method.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


1986 ◽  
Vol 14 (4) ◽  
pp. 201-218 ◽  
Author(s):  
A. G. Veith

Abstract This four-part series of papers addresses the problem of systematic determination of the influence of several tire factors on tire treadwear. Both the main effect of each factor and some of their interactive effects are included. The program was also structured to evaluate the influence of some external-to-tire conditions on the relationship of tire factors to treadwear. Part I describes the experimental design used to evaluate the effects on treadwear of generic tire type, aspect ratio, tread pattern (groove or void level), type of pattern (straight rib or block), and tread compound. Construction procedures and precautions used to obtain a valid and functional test method are included. Two guiding principles to be used in the data analyses of Parts II and III are discussed. These are the fractional groove and void concept, to characterize tread pattern geometry, and a demonstration of the equivalence of wear rate for identical compounds on whole tread or multi-section tread tires.


2017 ◽  
Vol 3 (1) ◽  
pp. 42
Author(s):  
Roshanira Che Mohd Noor ◽  
Nur Atiqah Rochin Demong

Providing a safe and healthy workplace is one of the most effective strategies in for holding down the cost of doing construction business. It was a part of the overall management system to facilitate themanagement of the occupational health and safety risk that are associated with the business of the organization. Factors affected the awareness level inclusive of safety and health conditions, dangerous working area, long wait care and services and lack of emergency communication werethe contributed factors to the awareness level for the operational level. Total of 122 incidents happened at Telekom Malaysia Berhad as compared to year 2015 only 86 cases. Thus, the main objective of this study was to determine the relationship between safety and health factors and the awareness level among operational workers.The determination of this research was to increase the awareness level among the operational level workerswho committing to safety and health environment.


Sign in / Sign up

Export Citation Format

Share Document