scholarly journals The Gulf Stream North Wall: Ageostrophic Circulation and Frontogenesis

2019 ◽  
Vol 49 (4) ◽  
pp. 893-916 ◽  
Author(s):  
James C. McWilliams ◽  
Jonathan Gula ◽  
M. Jeroen Molemaker

AbstractEastward zonal jets are common in the ocean and atmosphere, for example, the Gulf Stream and jet stream. They are characterized by atypically strong horizontal velocity, baroclinic vertical structure with an upward flow intensification, large change in the density stratification meridionally across the jet, large-scale meanders around a central latitude, narrow troughs and broad crests, and a sharp and vertically sloping northern (poleward) “wall” defined by horizontal maxima in the lateral gradients of both velocity and density. Measurements and realistic oceanic simulations show these features in the Gulf Stream downstream from its western boundary separation point. A diagnostic theory based on the conservative balance equations is developed to calculate the 3D velocity field associated with the dynamic height field. When applied to an idealized representation of a meandering jet, it explains the spatial structure of the associated ageostrophic secondary circulation around the jet and the positive frontogenetic tendency along the northern wall in the meander sector located upstream from the trough. This provides a basis for understanding why submesoscale instabilities and cross-wall intrusion and streamer events are more prevalent along the sector downstream from the trough and at the crest where there is not such a frontogenetic tendency. An important attribute for this frontogenesis pattern is the 3D shape of the jet, whose idealization is summarized above.

2010 ◽  
Vol 23 (12) ◽  
pp. 3249-3281 ◽  
Author(s):  
Young-Oh Kwon ◽  
Michael A. Alexander ◽  
Nicholas A. Bond ◽  
Claude Frankignoul ◽  
Hisashi Nakamura ◽  
...  

Abstract Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.


2015 ◽  
Vol 45 (3) ◽  
pp. 755-777 ◽  
Author(s):  
Antoine Hochet ◽  
Alain Colin de Verdière ◽  
Robert Scott

AbstractA linear model based on the quasigeostrophic equations is constructed in order to predict the vertical structure of Rossby waves and, more broadly, of anomalies resolved by altimeter data, roughly with periods longer than 20 days and with wavelengths larger than 100 km. The subsurface field is reconstructed from sea surface height and climatological stratification. The solution is calculated in periodic rectangular regions with a 3D discrete Fourier transform. The effect of the mean flow on Rossby waves is neglected, which the authors believe is a reasonable approximation for low latitudes. The method used has been tested with an idealized double-gyre simulation [performed with the Miami Isopycnal Coordinate Ocean Model (MICOM)]. The linear model is able to give reasonable predictions of subsurface currents at low latitudes (below approximately 30°) and for relatively weak mean flow. However, the predictions degrade with stronger mean flows and higher latitudes. The subsurface velocities calculated with this model using AVISO altimetric data and velocities from current meters have also been compared. Results show that the model gives reasonably accurate results away from the top and bottom boundaries, side boundaries, and far from western boundary currents. This study found, for the regions where the model is valid, an energy partition of the traditional modes of approximately 68% in the barotropic mode and 25% in the first baroclinic mode. Only 20% of the observed kinetic energy can be attributed to free Rossby waves of long periods that propagate energy to the west.


2020 ◽  
Vol 50 (11) ◽  
pp. 3331-3351
Author(s):  
Weifeng (Gordon) Zhang ◽  
Dennis J. McGillicuddy

AbstractThis study examines the generation of warm spiral structures (referred to as spiral streamers here) over Gulf Stream warm-core rings. Satellite sea surface temperature imagery shows spiral streamers forming after warmer water from the Gulf Stream or newly formed warm-core rings impinges onto old warm-core rings and then intrudes into the old rings. Field measurements in April 2018 capture the vertical structure of a warm spiral streamer as a shallow lens of low-density water winding over an old ring. Observations also show subduction on both sides of the spiral streamer, which carries surface waters downward. Idealized numerical model simulations initialized with observed water-mass densities reproduce spiral streamers over warm-core rings and reveal that their formation is a nonlinear submesoscale process forced by mesoscale dynamics. The negative density anomaly of the intruding water causes a density front at the interface between the intruding water and surface ring water, which, through thermal wind balance, drives a local anticyclonic flow. The pressure gradient and momentum advection of the local interfacial flow push the intruding water toward the ring center. The large-scale anticyclonic flow of the ring and the radial motion of the intruding water together form the spiral streamer. The observed subduction on both sides of the spiral streamer is part of the secondary cross-streamer circulation resulting from frontogenesis on the stretching streamer edges. The surface divergence of the secondary circulation pushes the side edges of the streamer away from each other, widens the warm spiral on the surface, and thus enhances its surface signal.


2002 ◽  
Vol 29 (15) ◽  
pp. 8-1-8-4 ◽  
Author(s):  
Xiaofeng Li ◽  
Timothy F. Donato ◽  
Quanan Zheng ◽  
William G. Pichel ◽  
Pablo Clemente-Colón

2008 ◽  
Vol 38 (10) ◽  
pp. 2294-2307 ◽  
Author(s):  
Hristina G. Hristova ◽  
Joseph Pedlosky ◽  
Michael A. Spall

Abstract A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2021 ◽  
Author(s):  
Nikos Bakas

<p>Forced-dissipative beta-plane turbulence in a single-layer shallow-water fluid has been widely considered as a simplified model of planetary turbulence as it exhibits turbulence self-organization into large-scale structures such as robust zonal jets and strong vortices. In this study we perform a series of numerical simulations to analyze the characteristics of the emerging structures as a function of the planetary vorticity gradient and the deformation radius. We report four regimes that appear as the energy input rate ε of the random stirring that supports turbulence in the flow increases. A homogeneous turbulent regime for low values of ε, a regime in which large scale Rossby waves form abruptly when ε passes a critical value, a regime in which robust zonal jets coexist with weaker Rossby waves when ε passes a second critical value and a regime of strong materially coherent propagating vortices for large values of ε. The wave regime which is not predicted by standard cascade theories of turbulence anisotropization and the vortex regime are studied thoroughly. Wavenumber-frequency spectra analysis shows that the Rossby waves in the second regime remain phase coherent over long times. The coherent vortices are identified using the Lagrangian Averaged Deviation (LAVD) method. The statistics of the vortices (lifetime, radius, strength and speed) are reported as a function of the large scale parameters. We find that the strong vortices propagate zonally with a phase speed that is equal or larger than the long Rossby wave speed and advect the background turbulence leading to a non-dispersive line in the wavenumber-frequency spectra.</p>


Author(s):  
QI QUAN ◽  
ZHONGYA CAI ◽  
GUANGZHEN JIN ◽  
ZHIQIANG LIU

AbstractTopographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in-phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.


2018 ◽  
Vol 32 (2) ◽  
pp. 445-463 ◽  
Author(s):  
A. Foussard ◽  
G. Lapeyre ◽  
R. Plougonven

ABSTRACT Large-scale oceanic fronts, such as in western boundary currents, have been shown to play an important role in the dynamics of atmospheric storm tracks. Little is known about the influence of mesoscale oceanic eddies on the free troposphere, although their imprint on the atmospheric boundary layer is well documented. The present study investigates the response of the tropospheric storm track to the presence of sea surface temperature (SST) anomalies associated with an eddying ocean. Idealized experiments are carried out in a configuration of a zonally reentrant channel representing the midlatitudes. The SST field is composed of a large-scale zonally symmetric front to which are added mesoscale eddies localized close to the front. Numerical simulations show a robust signal of a poleward shift of the storm track and of the tropospheric eddy-driven jet when oceanic eddies are taken into account. This is accompanied by more intense air–sea fluxes and convective heating above oceanic eddies. Also, a mean heating of the troposphere occurs poleward of the oceanic eddying region, within the storm track. A heat budget analysis shows that it is caused by a stronger diabatic heating within storms associated with more water advected poleward. This additional heating affects the baroclinicity of the flow, which pushes the jet and the storm track poleward.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 147 ◽  
Author(s):  
Fernand Assene ◽  
Yves Morel ◽  
Audrey Delpech ◽  
Micael Aguedjou ◽  
Julien Jouanno ◽  
...  

In this paper, we analyse the results from a numerical model at high resolution. We focus on the formation and maintenance of subsurface equatorial currents in the Gulf of Guinea and we base our analysis on the evolution of potential vorticity (PV). We highlight the link between submesoscale processes (involving mixing, friction and filamentation), mesoscale vortices and the mean currents in the area. In the simulation, eastward currents, the South and North Equatorial Undercurrents (SEUC and NEUC respectively) and the Guinea Undercurrent (GUC), are shown to be linked to the westward currents located equatorward. We show that east of 20° W, both westward and eastward currents are associated with the spreading of PV tongues by mesoscale vortices. The Equatorial Undercurrent (EUC) brings salty waters into the Gulf of Guinea. Mixing diffuses the salty anomaly downward. Meridional advection, mixing and friction are involved in the formation of fluid parcels with PV anomalies in the lower part and below the pycnocline, north and south of the EUC, in the Gulf of Guinea. These parcels gradually merge and vertically align, forming nonlinear anticyclonic vortices that propagate westward, spreading and horizontally mixing their PV content by stirring filamentation and diffusion, up to 20° W. When averaged over time, this creates regions of nearly homogeneous PV within zonal bands between 1.5° and 5° S or N. This mean PV field is associated with westward and eastward zonal jets flanking the EUC with the homogeneous PV tongues corresponding to the westward currents, and the strong PV gradient regions at their edges corresponding to the eastward currents. Mesoscale vortices strongly modulate the mean fields explaining the high spatial and temporal variability of the jets.


Sign in / Sign up

Export Citation Format

Share Document