scholarly journals Improving Parallel Performance of a Finite-Difference AGCM on Modern High-Performance Computers

2014 ◽  
Vol 31 (10) ◽  
pp. 2157-2168 ◽  
Author(s):  
Li Liu ◽  
Ruizhe Li ◽  
Guangwen Yang ◽  
Bin Wang ◽  
Lijuan Li ◽  
...  

Abstract The rapid development of science and technology has enabled finer and finer resolutions in atmospheric general circulation models (AGCMs). Parallelization becomes progressively more critical as the resolution of AGCMs increases. This paper presents a new parallel version of the finite-difference Gridpoint Atmospheric Model of the Institute of Atmospheric Physics (IAP)–State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG; GAMIL) with various parallel optimization strategies, including two-dimensional hybrid parallel decomposition; hybrid parallel programming; parallel communications for coupling the physical packages, land surface, and dynamical core; and a cascading solution to the tridiagonal equations used in the dynamical core. The new parallel version under two different horizontal resolutions (1° and 0.25°) is evaluated. The new parallel version enables GAMIL to achieve higher parallel efficiency and utilize a greater number of CPU cores. GAMIL1° achieves 37.8% parallel efficiency using 960 CPU cores, while GAMIL0.25° achieves 57.5% parallel efficiency.

2021 ◽  
Author(s):  
Paolo Ruggieri ◽  
Marianna Benassi ◽  
Stefano Materia ◽  
Daniele Peano ◽  
Constantin Ardilouze ◽  
...  

<p>Seasonal climate predictions leverage on many predictable or persistent components of the Earth system that can modify the state of the atmosphere and of relant weather related variable such as temprature and precipitation. With a dominant role of the ocean, the land surface provides predictability through various mechanisms, including snow cover, with particular reference to Autumn snow cover over the Eurasian continent. The snow cover alters the energy exchange between land surface and atmosphere and induces a diabatic cooling that in turn can affect the atmosphere both locally and remotely. Lagged relationships between snow cover in Eurasia and atmospheric modes of variability in the Northern Hemisphere have been investigated and documented but are deemed to be non-stationary and climate models typically do not reproduce observed relationships with consensus. The role of Autumn Eurasian snow in recent dynamical seasonal forecasts is therefore unclear. In this study we assess the role of Eurasian snow cover in a set of 5 operational seasonal forecast system characterized by a large ensemble size and a high atmospheric and oceanic resolution. Results are compemented with a set of targeted idealised simulations with atmospheric general circulation models forced by different snow cover conditions. Forecast systems reproduce realistically regional changes of the surface energy balance associated with snow cover variability. Retrospective forecasts and idealised sensitivity experiments converge in identifying a coherent change of the circulation in the Northern Hemisphere. This is compatible with a lagged but fast feedback from the snow to the Arctic Oscillation trough a tropospheric pathway.</p>


2018 ◽  
Author(s):  
Duncan Ackerley ◽  
Robin Chadwick ◽  
Dietmar Dommenget ◽  
Paola Petrelli

Abstract. General circulation models (GCMs) are routinely run under Atmospheric Modelling Intercomparison Project (AMIP) conditions with prescribed sea surface temperatures (SSTs) and sea ice concentrations (SICs) from observations. These AMIP simulations are often used to evaluate the role of the land and/or atmosphere in causing the development of systematic errors in such GCMs. Extensions to the original AMIP experiment have also been developed to evaluate the response of the global climate to increased SSTs (prescribed) and carbon-dioxide (CO2) as part of the Cloud Feedback Model Intercomparison Project (CFMIP). None of these international modelling initiatives has undertaken a set of experiments where the land conditions are also prescribed, which is the focus of the work presented in this paper. Experiments are performed initially with freely varying land conditions (surface temperature and, soil temperature and mositure) under five different configurations (AMIP, AMIP with uniform 4 K added to SSTs, AMIP SST with quadrupled CO2, AMIP SST and quadrupled CO2 without the plant stomata response, and increasing the solar constant by 3.3 %). Then, the land surface temperatures from the free-land experiments are used to perform a set of “AMIP-prescribed land” (PL) simulations, which are evaluated against their free-land counterparts. The PL simulations agree well with the free-land experiments, which indicates that the land surface is prescribed in a way that is consistent with the original free-land configuration. Further experiments are also performed with different combinations of SSTs, CO2 concentrations, solar constant and land conditions. For example, SST and land conditions are used from the AMIP simulation with quadrupled CO2 in order to simulate the atmospheric response to increased CO2 concentrations without the surface temperature changing. The results of all these experiments have been made publicly available for further analysis. The main aims of this paper are to provide a description of the method used and an initial validation of these AMIP-prescribed land experiments.


2019 ◽  
Vol 12 (11) ◽  
pp. 4823-4873 ◽  
Author(s):  
Neil C. Swart ◽  
Jason N. S. Cole ◽  
Viatcheslav V. Kharin ◽  
Mike Lazare ◽  
John F. Scinocca ◽  
...  

Abstract. The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and their coupling, as well as various aspects of model development, including tuning, optimization, and a reproducibility strategy. We also document the stability of the model using a long control simulation, quantify the model's ability to reproduce large-scale features of the historical climate, and evaluate the response of the model to external forcing. CanESM5 is comprised of three-dimensional atmosphere (T63 spectral resolution equivalent roughly to 2.8∘) and ocean (nominally 1∘) general circulation models, a sea-ice model, a land surface scheme, and explicit land and ocean carbon cycle models. The model features relatively coarse resolution and high throughput, which facilitates the production of large ensembles. CanESM5 has a notably higher equilibrium climate sensitivity (5.6 K) than its predecessor, CanESM2 (3.7 K), which we briefly discuss, along with simulated changes over the historical period. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science and service applications in Canada.


1990 ◽  
Vol 14 ◽  
pp. 364 ◽  
Author(s):  
Tetsuzo Yasunari ◽  
Akio Kitoh ◽  
Tatsushi Tokioka

Observational studies have shown that Eurasian snow-cover anomalies during winter-through-spring seasons have a great effect on anomalies in atmospheric circulation and climate in the following summer season through snow albedo feedback (Hahn and Shukla, 1976; Dey and Bhanu Kumar, 1987). Morinaga and Yasunari (1987) have revealed that large-scale snow-cover extent over central Asia in late winter, which particularly has a great effect on the circulation over Eurasia in the following season, is closely related to the Eurasian pattern circulation (Wallace and Gutzler, 1981) in the beginning of winter. Some atmospheric general circulation models (GCM) have suggested that not only the albedo effect of the snow cover but also the snow-hydrological process are important in producing the atmospheric anomalies in the following seasons (Yeh and others, 1984; Barnett and others, 1988). However, more quantitative evaluations of these effects have not yet been examined. For example, it is not clear to what extent atmospheric anomalies are explained solely by snow-cover anomalies. Spatial and seasonal dependencies of these effects are supposed to be very large. Relative importance of snow cover over Tibetan Plateau should also be examined, particularly relevant to Asian summer monsoon anomalies. Moreover, these effects seem to be very sensitive to parameterizations of these physical processes (Yamazaki, 1988). This study focuses on these problems by using some versions of GCMs of the Meteorological Research Institute. The results include the evaluation of total snow-cover feedbacks as part of internal dynamics of climatic change from 12-year GCM integration, and of the effect of anomalous snow cover over Eurasia in late winter on land surface conditions and atmospheric circulations in the succeeding seasons.


2004 ◽  
Vol 132 (11) ◽  
pp. 2539-2552 ◽  
Author(s):  
L. M. Polvani ◽  
R. K. Scott ◽  
S. J. Thomas

Abstract Solutions of the dry, adiabatic, primitive equations are computed, for the first time, to numerical convergence. These solutions consist of the short-time evolution of a slightly perturbed, baroclinically unstable, midlatitude jet, initially similar to the archetypal LC1 case of Thorncroft et al. The solutions are computed with two distinct numerical schemes to demonstrate that they are not dependent on the method used to obtain them. These solutions are used to propose a new test case for dynamical cores of atmospheric general circulation models. Instantaneous horizontal and vertical cross sections of vorticity and vertical velocity after 12 days, together with tables of key diagnostic quantities derived from the new solutions, are offered as reproducible benchmarks. Unlike the Held and Suarez benchmark, the partial differential equations and the initial conditions are here completely specified, and the new test case requires only 12 days of integration, involves no spatial or temporal averaging, and does not call for physical parameterizations to be added to the dynamical core itself.


Sign in / Sign up

Export Citation Format

Share Document