scholarly journals A Method to Deconvolve Errors in GPS RO-Derived Water Vapor Histograms

2014 ◽  
Vol 31 (12) ◽  
pp. 2606-2628 ◽  
Author(s):  
E. Robert Kursinski ◽  
Thomas Gebhardt

Abstract Water vapor is an important constituent in the earth’s atmosphere that must be understood to predict weather and climate. Water vapor is challenging to measure, and observations of water vapor must be as independent of weather and climate models as possible in order to assess and improve those models. When combined with independent atmospheric temperature estimates, GPS radio occultation (RO) refractivity profiles yield unique, all-weather, high-vertical-resolution, globally distributed profiles of tropospheric water vapor whose vertical extent is maximum at low latitudes. A method for retrieving water vapor, known as the direct method, combines GPS RO-derived refractivity with temperatures from global weather analyses. Unlike variational methods, the direct method does not use the water vapor estimates from analyses because of their potential systematic errors. While utilization of the direct method has been limited because it produces negative values, these unphysical negative values reveal unique information about errors. A deconvolution technique is presented here that uses the negative values to estimate and remove random errors in histograms of water vapor derived via the direct method. Results indicate direct method specific humidity errors at low latitudes range from 0.4 g kg−1 at 725 hPa to 0.14 g kg−1 near 350 hPa, which can be removed via deconvolution. The deconvolved histograms extend to about the 240-K level in the troposphere, corresponding to 10 km at low latitudes. Unlike the limited information of low-order statistical moments like means and variances, histograms capture the full range of variability, which opens a new window into water vapor behavior and increases understanding of processes at work in the hydrological cycle.

2019 ◽  
Vol 12 (3) ◽  
pp. 1955-1977
Author(s):  
Dale M. Ward ◽  
E. Robert Kursinski ◽  
Angel C. Otarola ◽  
Michael Stovern ◽  
Josh McGhee ◽  
...  

Abstract. A fundamental goal of satellite weather and climate observations is profiling the atmosphere with in situ-like precision and resolution with absolute accuracy and unbiased, all-weather, global coverage. While GPS radio occultation (RO) has perhaps come closest in terms of profiling the gas state from orbit, it does not provide sufficient information to simultaneously profile water vapor and temperature. We have been developing the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) RO system that probes the 22 and 183 GHz water vapor absorption lines to simultaneously profile temperature and water vapor from the lower troposphere to the mesopause. Using an ATOMMS instrument prototype between two mountaintops, we have demonstrated its ability to penetrate through water vapor, clouds and rain up to optical depths of 17 (7 orders of magnitude reduction in signal power) and still isolate the vapor absorption line spectrum to retrieve water vapor with a random uncertainty of less than 1 %. This demonstration represents a key step toward an orbiting ATOMMS system for weather, climate and constraining processes. ATOMMS water vapor retrievals from orbit will not be biased by climatological or first-guess constraints and will be capable of capturing nearly the full range of variability through the atmosphere and around the globe, in both clear and cloudy conditions, and will therefore greatly improve our understanding and analysis of water vapor. This information can be used to improve weather and climate models through constraints on and refinement of processes affecting and affected by water vapor.


2009 ◽  
Vol 22 (23) ◽  
pp. 6404-6412 ◽  
Author(s):  
A. E. Dessler ◽  
S. Wong

Abstract The strength of the water vapor feedback has been estimated by analyzing the changes in tropospheric specific humidity during El Niño–Southern Oscillation (ENSO) cycles. This analysis is done in climate models driven by observed sea surface temperatures [Atmospheric Model Intercomparison Project (AMIP) runs], preindustrial runs of fully coupled climate models, and in two reanalysis products, the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). The water vapor feedback during ENSO-driven climate variations in the AMIP models ranges from 1.9 to 3.7 W m−2 K−1, in the control runs it ranges from 1.4 to 3.9 W m−2 K−1, and in the ERA-40 and MERRA it is 3.7 and 4.7 W m−2 K−1, respectively. Taken as a group, these values are higher than previous estimates of the water vapor feedback in response to century-long global warming. Also examined is the reason for the large spread in the ENSO-driven water vapor feedback among the models and between the models and the reanalyses. The models and the reanalyses show a consistent relationship between the variations in the tropical surface temperature over an ENSO cycle and the radiative response to the associated changes in specific humidity. However, the feedback is defined as the ratio of the radiative response to the change in the global average temperature. Differences in extratropical temperatures will, therefore, lead to different inferred feedbacks, and this is the root cause of spread in feedbacks observed here. This is also the likely reason that the feedback inferred from ENSO is larger than for long-term global warming.


2012 ◽  
Vol 25 (3) ◽  
pp. 992-1006 ◽  
Author(s):  
William R. Boos

Abstract In climate models subject to greenhouse gas–induced warming, vertically integrated water vapor increases at nearly the same rate as its saturation value. Previous studies showed that this increase dominates circulation changes in climate models, so that precipitation minus evaporation (P − E) decreases in the subtropics and increases in the tropics and high latitudes at a rate consistent with a Clausius–Clapeyron scaling. This study examines whether the same thermodynamic scaling describes differences in the hydrological cycle between modern times and the last glacial maximum (LGM), as simulated by a suite of coupled ocean–atmosphere models. In these models, changes in water vapor between modern and LGM climates do scale with temperature according to Clausius–Clapeyron, but this thermodynamic scaling provides a poorer description of the changes in P − E. While the scaling is qualitatively consistent with simulations in the zonal mean, predicting higher P − E in the subtropics and lower P − E in the tropics and high latitudes, it fails to account for high-amplitude zonal asymmetries. Large horizontal gradients of temperature change, which are often neglected when applying the scaling to next-century warming, are shown to be important in large parts of the extratropics. However, even with this correction the thermodynamic scaling provides a poor quantitative fit to the simulations. This suggests that circulation changes play a dominant role in regional hydrological change between modern and LGM climates. Changes in transient eddy moisture transports are shown to be particularly important, even in the deep tropics. Implications for the selection and interpretation of climate proxies are discussed.


2016 ◽  
Vol 29 (10) ◽  
pp. 3661-3673 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden

Abstract In response to rising CO2 concentrations, climate models predict that globally averaged precipitation will increase at a much slower rate than water vapor. However, some observational studies suggest that global-mean precipitation and water vapor have increased at similar rates. While the modeling results emphasize changes at multidecadal time scales where the anthropogenic signal dominates, the shorter observational record is more heavily influenced by internal variability. Whether the physical constraints on the hydrological cycle fundamentally differ between these time scales is investigated. The results of this study show that while global-mean precipitation is constrained by radiative cooling on both time scales, the effects of CO2 dominate on multidecadal time scales, acting to suppress the increase in radiative cooling with warming. This results in a smaller precipitation change compared to interannual time scales where the effects of CO2 forcing are small. It is also shown that intermodel spread in the response of atmospheric radiative cooling (and thus global-mean precipitation) to anthropogenically forced surface warming is dominated by clear-sky radiative processes and not clouds, while clouds dominate under internal variability. The findings indicate that the sensitivity of the global hydrological cycle to surface warming differs fundamentally between internal variability and anthropogenically forced changes and this has important implications for interpreting observations of the hydrological sensitivity.


2006 ◽  
Vol 19 (20) ◽  
pp. 5455-5464 ◽  
Author(s):  
Ken Minschwaner ◽  
Andrew E. Dessler ◽  
Parnchai Sawaengphokhai

Abstract Relationships between the mean humidity in the tropical upper troposphere and tropical sea surface temperatures in 17 coupled ocean–atmosphere global climate models were investigated. This analysis builds on a prior study of humidity and surface temperature measurements that suggested an overall positive climate feedback by water vapor in the tropical upper troposphere whereby the mean specific humidity increases with warmer sea surface temperature (SST). The model results for present-day simulations show a large range in mean humidity, mean air temperature, and mean SST, but they consistently show increases in upper-tropospheric specific humidity with warmer SST. The model average increase in water vapor at 250 mb with convective mean SST is 44 ppmv K−1, with a standard deviation of 14 ppmv K−1. Furthermore, the implied feedback in the models is not as strong as would be the case if relative humidity remained constant in the upper troposphere. The model mean decrease in relative humidity is −2.3% ± 1.0% K−1 at 250 mb, whereas observations indicate decreases of −4.8% ± 1.7% K−1 near 215 mb. These two values agree within the respective ranges of uncertainty, indicating that current global climate models are simulating the observed behavior of water vapor in the tropical upper troposphere with reasonable accuracy.


2017 ◽  
Vol 372 (1723) ◽  
pp. 20160135 ◽  
Author(s):  
Caroline C. Ummenhofer ◽  
Gerald A. Meehl

Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’.


2021 ◽  
pp. 1-52
Author(s):  
Pengfei Zhang ◽  
Gang Chen ◽  
Weiming Ma ◽  
Yi Ming ◽  
Zheng Wu

AbstractAtmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance.


2020 ◽  
Author(s):  
Mengmiao Yang ◽  
De-Zheng Sun ◽  
Guang J. Zhang

<p><span>It is an old question whether tropospheric water vapor at different levels changes consistently in response to the enhanced greenhouse gas in the atmosphere. Earlier studies using older versions of climate models and available data revealed a significant difference between models and observations. Water vapor changes in the interior of the tropical troposphere have been found to be more strongly coupled to changes at the surface in climate models than in observations. We reexamine this issue using four leading CMIP5 models (CCSM4, HadGEM2-A, GFDL-CM3 and MPI-ESM-MR) and more updated observational datasets (ERA-Interim and NCEP reanalysis). Focusing on the Tropics, we have calculated the correlations between interannual variation of specific humidity in all levels of the troposphere with that at the surface. It is found that the previously noted biases in the strength of the coupling between water vapor changes in the interior of the troposphere and those at the surface still exist in the updated models—the change in the tropical averaged tropospheric water vapor is more strongly correlated with the change in the surface, especially in the middle troposphere. It is argued that the vertical profile of water vapor correlations in observations is more consistent with the “hot tower” concept for tropical convections. Zonal mean correlation results and those from the moisture regime sorting method are consistent with each other, both of which indicate the role of deep convection as a mechanism to couple the middle tropospheric water vapor and that in the surface and that an inaccurate representation of deep convection as a possible cause for the discrepancies between models and observations in the coupling between middle tropospheric water vapor and those at the surface.</span></p>


Author(s):  
F. Sabzehee ◽  
V. Nafisi ◽  
S. Iran Pour

The Urmia Lake is located in northwestern Iran. It is the sixth largest salt lake in the world. In the past 14 years, this lake strongly faced to the water level decrease and surface water reduction. Several space-borne techniques have been employed for detecting the hydrological cycle and its inter-annual changes.<br><br> The goal of this paper is to investigate weather reanalysis products such as specific humidity of NCEP model and a total column water vapor extracted from ECMWF model and other techniques such as satellite altimetry that have been powerful for the identification of some drought factors of the Urmia Lake.<br><br> In this study, we used satellite altimetry data from ENVISAT and CryoSat-2 to monitor the Lake water level and optical satellite imagery to determine the surface water extent of the lake during 2002 to 2014. Our altimetry and satellite imagery results reveal decrease in height and area of Urmia Lake over the last 14 years. The lake surface area and the water level decreased continuously at approximately 2666 km<sup>2</sup> and 3.5 m respectively.<br><br> Moreover, we employed the monthly 0.125°×0.125° datasets of the ECMWF data and 2.5°×2.5° datasets of the NCEP data to demonstrate amount of water vapor in the atmosphere over the lake. The total column water vapor extracted from ECMWF data and specific humidity of NCEP data show similar behavior. Results indicate that no meaningful correlation between the altimetry data and weather reanalysis models exists. The weather reanalysis models do not indicate descending variations during 2000 until 2014. For interpreting the situation and studying the climate change and man-made impacts on the drought in this region, we need to use ground-based data such as wind speed, precipitation, barometric pressure and temperature.


2012 ◽  
Vol 12 (7) ◽  
pp. 16493-16514 ◽  
Author(s):  
G.-J. Roelofs

Abstract. The dominant removal mechanism for atmospheric aerosol is activation of particles to cloud droplets and subsequent wet deposition in precipitation. The atmospheric lifetime of aerosol is thus closely coupled to the atmospheric cycling time of water vapor. Changes of hydrological cycle characteristics resulting from climate change therefore directly affect aerosol lifetime, and thus the radiative forcing exerted by aerosol. This study expresses the coupling between water vapor and aerosol lifetimes and their temperature sensitivities in fundamental equations and in terms of the efficiency of processing of air by precipitating clouds. Based on climate model simulations these temperature sensitivities are estimated to be on the order of +5.3% K−1, but this may be an overestimation. Generally, shifting spatial and temporal patterns of aerosol (precursor) emissions and precipitation, and changes in aerosol activation efficiency probably influence aerosol lifetimes more than climate change itself, resulting in a wide range of simulated aerosol lifetime sensitivities between aerosol-climate models. It is possible that the climate sensitivity of models plays a role. It can be argued that climate sensitivity is intrinsically coupled with the simulated (temperature sensitivity of the) aerosol lifetime through the distribution of water vapor and aerosol between the lower and upper troposphere. This implies a fundamental relation between various feedback forcings (water vapor, lapse rate, cloud) and the aerosol forcing, illustrating the key role of the hydrological cycle in different aspects of the climate system.


Sign in / Sign up

Export Citation Format

Share Document