Scanning laser wave recorder with registration of “instantaneous” sea surface profiles

Author(s):  
V.V. Sterlyadkin ◽  
K.V. Kulikovsky ◽  
A.V. Kuzmin ◽  
E.A. Sharkov ◽  
M.V. Likhacheva

AbstractA direct optical method for measuring the “instantaneous” profile of the sea surface with an accuracy of 1 mm and a spatial resolution of 3 mm is described. Surface profile measurements can be carried out on spatial scales from units of millimeters to units of meters with an averaging time of 10−4 s. The method is based on the synchronization of the beginning of scanning a laser beam over the sea surface and the beginning of recording the radiation scattered on the surface onto the video camera matrix. The heights of all points of the profile are brought to a single point in time, which makes it possible to obtain “instantaneous” profiles of the sea surface with the frequency of video recording. The measurement technique and data processing algorithm are described. The errors of the method are substantiated. The results of field measurements of the parameters of sea waves are presented: amplitude spectra, distribution of slopes at various spatial averaging scales. The applied version of the wave recorder did not allow recording capillary oscillations, but with some modernization it will be possible. The method is completely remote, does not distort the properties of the surface, is not affected by wind, waves and sea currents, it allows you to measure the proportion of foam on the surface. The possibility of applying the proposed method at any time of the day and in a wide range of weather conditions has been experimentally proved.

2021 ◽  
Vol 37 (4) ◽  
Author(s):  
A. S. Zapevalov ◽  
A. V. Garmashov ◽  
◽  

Purpose. The aim of the study is to analyze variability of the statistical moments characterizing deviations of the sea surface elevation distributions from the Gaussian one. Methods and Results. Field studies of the sea waves’ characteristics were carried out from the stationary oceanographic platform located in the Black Sea near the Southern coast of Crimea. The data obtained both in summer and winter, were used. The statistical moments were calculated separately for wind waves and swell. The measurements were performed in a wide range of meteorological conditions and wave parameters (wind speed varied from 0 to 26 m/s, wave age – from 0 to 5.2 and steepness – from 0.005 to 0.095). For wind waves, the coefficients of skewness correlation with the waves’ steepness and age were equal to 0.46 and 0.38. The kurtosis correlation coefficients with these parameters were small (0.09 and 0.07), but with the confidence level 99.8% – significant. For swell, the correlation coefficients were 1.5 – 2.0 times lower. Conclusions. The statistical moments of the sea surface elevations of the third and higher orders are the indicators of the wave field nonlinearity, which should be taken into account when solving a wide range of the applied and fundamental problems. The deviations of the surface elevation distributions from the Gaussian one are not described unambiguously by the waves’ steepness and age. At the fixed values of these parameters, a large scatter in the values of the surface elevations’ asymmetry and kurtosis is observed. This imposes significant limitations on the possibility of applying the nonlinear wave models based on the wave profile expansion by small parameter (steepness) degrees, in engineering calculations.


2014 ◽  
Vol 54 (2) ◽  
pp. 544
Author(s):  
Ashley Neale ◽  
James Hamilton

Background The $29 billion Wheatstone Project is one of Australia’s largest resource projects, located 12 km west of Onslow on the Pilbara coast of WA. Objective NewSat was selected to provide vital communication services to the Wheatstone Project as the supplier of the Operations Satellite System to deliver remote internet, voice, video, and data services for LNG operations, OH&S compliance, backup communications, and onsite staff welfare. A project as large and complex as the Wheatstone Project required a range of solutions to overcome multiple communication challenges due to the large and varied number of users and diverse and harsh onsite weather conditions. With long standing relationships with Australian oil and gas service providers, NewSat had the reputation and experience to deliver the satellite services required. Solution NewSat worked closely with the Wheatstone engineering and design team to ensure the project had the best possible satellite service available and the highest amount of design options as the Project matured. The final design was a meshed satellite network, linking the onshore production facility at Onslow, the offshore platform, and the Perth head office. As a 24 x 7 x 365 operation, the project required an always-on satellite service. NewSat’s wide range of satellites provided line-of-site and satellite diversity to ensure there was no single point of failure across the satellite network. As well as providing the best infrastructure, NewSat integrated Adaptive Coding and Modulation (ACM) into the network to overcome the varying atmospheric challenges inherent in the region.


2020 ◽  
Vol 36 (5) ◽  
Author(s):  
A. E. Korinenko ◽  
V. V. Malinovsky ◽  
V. N. Kudryavtsev ◽  
V. A. Dulov ◽  
◽  
...  

Purpose. The work is aimed at studying geometric similarity of wind wave breakings in natural conditions, estimating the Duncan constant which connects the wave energy dissipation conditioned by wave breakings, with distribution of the lengths of a breaking wave crests Λ(с). Methods and Results. The field measurements of the wave breaking characteristics were carried out at the stationary oceanographic platform located in the Golubaya Bay near the village Katsiveli. Geometric dimensions of the wave breakings’ active phase, velocities and directions of their movement were determined from the video records of the sea surface; simultaneously, the meteorological information was recorded and the surface waves’ characteristics were measured. Altogether 55 video records of the sea surface were obtained; duration of each of them was 40–60 minutes. The measurements were performed in a wide range of meteorological conditions and wave parameters (wind speed varied from 9.2 to 21.4 m/s). Conclusions. It is found that the probability densities of the ratio between the maximum length of a breaking and the length of a breaking wave, obtained in various wind and wave conditions are similar. The average value of this ratio is 0.1. Distributions of the wave breakings’ total length are constructed in the movement velocity intervals on a surface unit. It is shown that the experimental estimates of dependence of these distributions upon the wind speed and the wave breaking movement velocity are consistent with the theoretical predictions of O.M. Phillips (1985); at that no dependence on the waves’ age was found. Quantitative characteristics of the relation between the wave lengths’ distribution and the energy dissipation are obtained. The Duncan constant was estimated; it turned out to be equal to 1.8⋅10-3 and independent upon the waves’ and atmosphere parameters.


2021 ◽  
Vol 2052 (1) ◽  
pp. 012034
Author(s):  
N S Pyko ◽  
S A Pyko ◽  
V N Mikhailov ◽  
M I Bogachev

Abstract In this work we study the applicability of the maximum covariance analysis (MCA) for the analysis of matrices characterizing the spatiotemporal models of sea surface backscatter signals for different types of sea waves. The method is based on the singular value decomposition of the covariance matrix describing the relationship between two spatiotemporal matrices. The dependence of the obtained correlation coefficients on the degree of sea roughness, as well as on the ratio of the heights of wind waves and rogue waves are determined. The statistical characteristics of the obtained correlation coefficients of the sea surface backscatter signals are analysed. Our results indicate that the MCA method, at least from the modelling perspective, could be applicable to the classification of the sea surface from its backscatter signal characteristics, including an early detection and analysis of the rogue waves onset and development.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
A. S. Zapevalov ◽  
A. V. Garmashov ◽  
◽  

Purpose. The aim of the study is to analyze variability of the statistical moments characterizing deviations of the sea surface elevation distributions from the Gaussian. Methods and Results. Field studies of the sea waves’ characteristics were carried out from the stationary oceanographic platform located in the Black Sea near the Southern coast of Crimea. The data obtained both in summer and winter, were used. The statistical moments were calculated separately for wind waves and swell. The measurements were performed in a wide range of meteorological conditions and wave parameters (wind speed varied from 0 to 26 m/s, wave age – from 0 to 5.2 and steepness – from 0.005 to 0.095). For wind waves, the coefficients of skewness correlation with the waves’ steepness and age were equal to 0.46 and 0.38. The kurtosis correlation coefficients with these parameters were small (0.09 and 0.07), but with the confidence level 99.8% – significant. For swell, the correlation coefficients were 1.5 – 2.0 times lower. Conclusions. The statistical moments of the sea surface elevations of the third and higher orders are the indicators of the wave field nonlinearity, which should be taken into account when solving a wide range of the applied and fundamental problems. The deviations of the surface elevation distributions from the Gaussian one are not described unambiguously by the steepness and wave age. At the fixed values of these parameters, a large scatter in the skewness and kurtosis of the surface elevations is observed. This imposes significant limitations on the possibility of applying the nonlinear wave models based on the wave profile expansion by small parameter (steepness) degrees, in engineering calculations.


2020 ◽  
Vol 27 (5) ◽  
Author(s):  
A. E. Korinenko ◽  
V. V. Malinovsky ◽  
V. N. Kudryavtsev ◽  
V. A. Dulov ◽  
◽  
...  

Purpose. The work is aimed at studying geometric similarity of wind wave breakings in natural conditions, estimating the Duncan constant which connects the wave energy dissipation conditioned by wave breakings, with distribution of the lengths of a breaking wave fronts Λ(с). Methods and Results. The field measurements of the wave breaking characteristics were carried out at the stationary oceanographic platform located in the Golubaya Bay near the Katsiveli village. Geometric dimensions of the wave breakings’ active phase, velocities and directions of their movement were determined from the video records of the sea surface; simultaneously, the meteorological information was recorded and the surface waves’ characteristics were measured. Altogether 55 video recordings (duration 40–50 mins) of the sea surface were obtained. The measurements were carried out in a wide range of meteorological conditions and wave parameters (wind speed varied from 9.2 to 21.4 m/s). Conclusions. It is found that the probability densities of the ratio between the maximum length of a breaking and the length of a breaking wave, obtained in various wind and wave conditions are similar. The average value of this ratio is 0.1. Distributions of the wave breakings’ total length are constructed in the movement velocity intervals on a surface unit. It is shown that the experimental estimates of dependence of these distributions upon the wind speed and the wave breaking movement velocity are consistent with the theoretical predictions of O.M. Phillips (1985); at that no dependence on the waves’ age was found. Quantitative characteristics of the relation between the wave lengths’ distribution and the energy dissipation are obtained. The Duncan constant was estimated; it turned out to be equal to 1.8·10-3 and independent upon the waves’ and atmosphere parameters.


2020 ◽  
Vol 12 (4) ◽  
pp. 348-352
Author(s):  
S. Malchev ◽  
S. Savchovska

Abstract. The periods with continuous freezing air temperatures reported during the spring of 2020 (13 incidents) affected a wide range of local and introduced sweet cherry cultivars in the region of Plovdiv. They vary from -0.6°C on March 02 to -4.9°C on March 16-17. The duration of influence of the lowest temperatures is 6 and 12 hours between March 16 and 17. The inspection of fruit buds and flowers was conducted twice (on March 26 and April 08) at different phenological stages after continuous waves of cold weather conditions alternated with high temperatures. During the phenological phase ‘bud burst’ (tight cluster or BBCH 55) some of the flowers in the buds did not develop further making the damage hardly detectable. The most damaged are hybrid El.28-21 (95.00%), ‘Van’ (91.89%) and ‘Bing’ (89.41%) and from the next group ‘Lapins’ (85.98%) and ‘Rosita’ (83.33%). A larger intermediate group form ‘Kossara’ (81.67%), ‘Rozalina’ (76.00%), ‘Sunburst’ (75.00%), ‘Bigarreau Burlat’ (69.11%) and ‘Kuklenska belitza’ (66.67%). Candidate-cultivar El.17-90 ‘Asparuh’ has the lowest frost damage values of 55.00% and El.17-37 ‘Tzvetina’ with damage of 50.60%.


Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Mendes ◽  
J. C. B. da Silva ◽  
J. M. Magalhaes ◽  
B. St-Denis ◽  
D. Bourgault ◽  
...  

AbstractInternal waves (IWs) in the ocean span across a wide range of time and spatial scales and are now acknowledged as important sources of turbulence and mixing, with the largest observations having 200 m in amplitude and vertical velocities close to 0.5 m s−1. Their origin is mostly tidal, but an increasing number of non-tidal generation mechanisms have also been observed. For instance, river plumes provide horizontally propagating density fronts, which were observed to generate IWs when transitioning from supercritical to subcritical flow. In this study, satellite imagery and autonomous underwater measurements are combined with numerical modeling to investigate IW generation from an initial subcritical density front originating at the Douro River plume (western Iberian coast). These unprecedented results may have important implications in near-shore dynamics since that suggest that rivers of moderate flow may play an important role in IW generation between fresh riverine and coastal waters.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bingran Wang ◽  
Tiancheng Lou ◽  
Lingling Wei ◽  
Wenchan Chen ◽  
Longbing Huang ◽  
...  

AbstractAlternaria alternata, a causal agent of leaf blights and spots on a wide range of hosts, has a high risk of developing resistance to fungicides. Procymidone, a dicarboximide fungicide (DCF), has been widely used in controlling Alternaria leaf blights in China for decades. However, the resistance of A. alternata against DCFs has rarely been reported from crucifer plants. A total of 198 A. alternata isolates were collected from commercial fields of broccoli and cabbage during 2018–2019, and their sensitivities to procymidone were determined. Biochemical and molecular characteristics were subsequently compared between the high-level procymidone-resistant (ProHR) and procymidone-sensitive (ProS) isolates, and also between ProHR isolates from broccoli and cabbage. Compared with ProS isolates, the mycelial growth rate, sporulation capacity and virulence of most ProHR isolates were reduced; ProHR isolates displayed an increased sensitivity to osmotic stresses and a reduced sensitivity to sodium dodecyl sulfate (SDS); all ProHR isolates showed a reduced sensitivity to hydrogen peroxide (H2O2) except for the isolate B102. Correlation analysis revealed a positive cross-resistance between procymidone and iprodione, or fludioxonil. When treated with 10 μg/mL of procymidone, both mycelial intracellular glycerol accumulations (MIGAs) and relative expression of AaHK1 in ProS isolates were higher than those in ProHR isolates. Sequence alignment of AaHK1 from ten ProHR isolates demonstrated that five of them possessed a single-point mutation (P94A, V612L, E708K or Q924STOP), and four isolates had an insertion or a deletion in their coding regions. No significant difference in biochemical characteristics was observed among ProHR isolates from two different hosts, though mutations in AaHK1 of the cabbage-originated ProHR isolates were distinct from those of the broccoli-originated ProHR isolates.


Sign in / Sign up

Export Citation Format

Share Document