Intercomparisons of Stratospheric Water Vapor Sensors: FLASH-B and NOAA/CMDL Frost-Point Hygrometer

2007 ◽  
Vol 24 (6) ◽  
pp. 941-952 ◽  
Author(s):  
H. Vömel ◽  
V. Yushkov ◽  
S. Khaykin ◽  
L. Korshunov ◽  
E. Kyrö ◽  
...  

Studies of global climate rely critically on accurate water vapor measurements. In this paper, a comparison of the NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL) frost-point hygrometer and the Fluorescent Advanced Stratospheric Hygrometer for Balloon (FLASH-B) Lyman-alpha hygrometer is reported. Both instruments were part of a small balloon payload that was launched multiple times at Sodankylä, Finland. The comparison shows agreement well within the instrumental uncertainties between both sensors in the Arctic stratospheric vortex. The mean deviation between both instruments in the range between 15 and 25 km is −2.4% ± 3.1% (one standard deviation). The comparison identified some instrumental issues, such as a low mirror-temperature calibration correction for the NOAA/CMDL frost-point hygrometer as well as a time lag. It was found that the FLASH-B hygrometer measures water vapor reliably above 7 km in the polar atmosphere. Comparisons in the upper troposphere are affected by the gain change of the NOAA/CMDL hygrometer, causing a lag and a wet bias in the tropospheric low gain setting under the dry conditions in the upper troposphere.

2016 ◽  
Author(s):  
Dale F. Hurst ◽  
William G. Read ◽  
Holger Vömel ◽  
Henry B. Selkirk ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three FP sites, Boulder, Colorado (40.0° N), Hilo, Hawaii (19.7° N) and Lauder, New Zealand (45.0° S), from August 2004 through December 2012, demonstrated agreement better than 1 % between 68 and 26 hPa, but also exposed statistically significant biases of 2 to 10 % at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FPH-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites, Lindenberg, Germany (52.2° N) and San José, Costa Rica (10.0° N) that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over 4 of the 5 sites have diverged at rates of 0.03 to 0.07 ppmv yr−1 (0.6 to 1.5 % yr−1) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980–2010) average growth rate of stratospheric water vapor (~1 % yr−1) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.


2016 ◽  
Vol 9 (9) ◽  
pp. 4447-4457 ◽  
Author(s):  
Dale F. Hurst ◽  
William G. Read ◽  
Holger Vömel ◽  
Henry B. Selkirk ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites – Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) – from August 2004 through December 2012 not only demonstrated agreement better than 1 % between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10 % at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP–MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites – Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) – that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year−1 (0.6 to 1.5 % year−1) from  ∼  2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980–2010) average growth rate of stratospheric water vapor ( ∼  1 % year−1) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP–MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 291
Author(s):  
Jinpeng Lu ◽  
Fei Xie ◽  
Hongying Tian ◽  
Jiali Luo

Stratospheric water vapor (SWV) changes play an important role in regulating global climate change, and its variations are controlled by tropopause temperature. This study estimates the impacts of tropopause layer ozone changes on tropopause temperature by radiative process and further influences on lower stratospheric water vapor (LSWV) using the Whole Atmosphere Community Climate Model (WACCM4). It is found that a 10% depletion in global (mid-low and polar latitudes) tropopause layer ozone causes a significant cooling of the tropical cold-point tropopause with a maximum cooling of 0.3 K, and a corresponding reduction in LSWV with a maximum value of 0.06 ppmv. The depletion of tropopause layer ozone at mid-low latitudes results in cooling of the tropical cold-point tropopause by radiative processes and a corresponding LSWV reduction. However, the effect of polar tropopause layer ozone depletion on tropical cold-point tropopause temperature and LSWV is opposite to and weaker than the effect of tropopause layer ozone depletion at mid-low latitudes. Finally, the joint effect of tropopause layer ozone depletion (at mid-low and polar latitudes) causes a negative cold-point tropopause temperature and a decreased tropical LSWV. Conversely, the impact of a 10% increase in global tropopause layer ozone on LSWV is exactly the opposite of the impact of ozone depletion. After 2000, tropopause layer ozone decreased at mid-low latitudes and increased at high latitudes. These tropopause layer ozone changes at different latitudes cause joint cooling in the tropical cold-point tropopause and a reduction in LSWV. Clarifying the impacts of tropopause layer ozone changes on LSWV clearly is important for understanding and predicting SWV changes in the context of future global ozone recovery.


2019 ◽  
Vol 12 (2) ◽  
pp. 873-890
Author(s):  
Ivan Ortega ◽  
Rebecca R. Buchholz ◽  
Emrys G. Hall ◽  
Dale F. Hurst ◽  
Allen F. Jordan ◽  
...  

Abstract. Retrievals of vertical profiles of key atmospheric gases provide a critical long-term record from ground-based Fourier transform infrared (FTIR) solar absorption measurements. However, the characterization of the retrieved vertical profile structure can be difficult to validate, especially for gases with large vertical gradients and spatial–temporal variability such as water vapor. In this work, we evaluate the accuracy of the most common water vapor isotope (H216O, hereafter WV) FTIR retrievals in the lower and upper troposphere–lower stratosphere. Coincident high-quality vertically resolved WV profile measurements obtained from 2010 to 2016 with balloon-borne NOAA frost point hygrometers (FPHs) are used as reference to evaluate the performance of the retrieved profiles at two sites: Boulder (BLD), Colorado, and at the mountaintop observatory of Mauna Loa (MLO), Hawaii. For a meaningful comparison, the spatial–temporal variability has been investigated. We present results of comparisons among FTIR retrievals with unsmoothed and smoothed FPH profiles to assess WV vertical gradients. Additionally, we evaluate the quantitative impact of different a priori profiles in the retrieval of WV. An orthogonal linear regression analysis shows the best correlation among tropospheric layers using ERA-Interim (ERA-I) a priori profiles and biases are lower for unsmoothed comparisons. In Boulder, we found a negative bias of 0.02±1.9 % (r=0.95) for the 1.5–3 km layer. A larger negative bias of 11.1±3.5 % (r=0.97) was found in the lower free troposphere layer of 3–5 km attributed to rapid vertical change of WV, which is not always captured by the retrievals. The bias improves in the 5–7.5 km layer (1.0±5.3 %, r=0.94). The bias remains at about 13 % for layers above 7.5 km but below 13.5 km. At MLO the spatial mismatch is significantly larger due to the launch of the sonde being farther from the FTIR location. Nevertheless, we estimate a negative bias of 5.9±4.6 % (r=0.93) for the 3.5–5.5 km layer and 9.9±3.7 % (r=0.93) for the 5.5–7.5 km layer, and we measure positive biases of 6.2±3.6 % (r=0.95) for the 7.5–10 km layer and 12.6 % and greater values above 10 km. The agreement for the first layer is significantly better at BLD because the air masses are similar for both FTIR and FPH. Furthermore, for the first time we study the influence of different WV a priori profiles in the retrieval of selected gas profiles. Using NDACC standard retrievals we present results for hydrogen cyanide (HCN), carbon monoxide (CO), and ethane (C2H6) by taking NOAA FPH profiles as the ground truth and evaluating the impact of other WV profiles. We show that the effect is minor for C2H6 (bias <0.5 % for all WV sources) among all vertical layers. However, for HCN we found significant biases between 6 % for layers close to the surface and 2 % for the upper troposphere depending on the WV profile source. The best results (reduced bias and precision and r values closer to unity) are always found for pre-retrieved WV. Therefore, we recommend first retrieving WV to use in subsequent retrieval of gases.


2012 ◽  
Vol 12 (8) ◽  
pp. 19571-19615 ◽  
Author(s):  
Z. Engida ◽  
I. Folkins

Abstract. Measurements from the Microwave Limb Sounder (MLS) on the 68 hPa pressure level from 1 January 2005 to 31 December 2010 are used to calculate the coherence between anomalies in the tropical mean mixing ratios of H2O, CO, and N2O, and 100 hPa temperature. We show that the fluctuations of lower stratospheric water vapor in the subseasonal and multiyear time windows are generated by different physical mechanisms. In the subseasonal time window, the spatial pattern of the coherence between 100 hPa temperature and water vapor, and the time lag, show that the variability in lower stratospheric water vapor is dominated by fluctuations in upwelling forced by the dissipation of tropical Rossby waves. In the multiyear time window, the variability of lower stratospheric water vapor is more strongly coherent with temperature fluctuations on the 100 hPa surface in regions where the annual mean temperature is colder than 194 K. In addition, the 68 hPa water vapor anomalies lag the 100 hPa temperature anomalies by roughly 140 days. In this time window, the variability of lower stratospheric water vapor is therefore dominated by changes in the temperature dependent dehydration efficiency which modulate the water vapor stratospheric entry mixing ratio. On subseasonal timescales, the spatial pattern of the coherence between 100 hPa temperature and 68 hPa CO anomalies is very similar to the pattern of coherence between 100 hPa temperature and the Real-time Multivariate MJO series 1 (RMM1) index of the Madden Julian Oscillation (MJO). The MJO therefore has a strong influence on the subseasonal variability of CO in the lower stratosphere. The subseasonal 68 hPa CO and H2O anomalies lag the 100 hPa temperature anomalies by 3.16 and 2.51 days, respectively. The similarity between the two time lags suggests that the subseasonal CO anomalies can also be attributed to changes in upwelling. The multiyear variability in lower stratospheric N2O appears to be dominated by the Quasi Biennial Oscillation (QBO).


2012 ◽  
Vol 25 (17) ◽  
pp. 5731-5747 ◽  
Author(s):  
Bryce E. Harrop ◽  
Dennis L. Hartmann

Abstract A cloud-resolving model is used to test the hypothesis that radiative cooling by water vapor emission is the primary control on the temperature of tropical anvil clouds. The temperature of ice clouds in the simulation can be increased or decreased by changing only the emissivity of water vapor in the upper troposphere. The effect of the model’s fixed ozone profile on stability creates a pressure-dependent inhibition of convection, leading to a small warming in cloud-top temperature as SST is increased. Increasing stratospheric water vapor also warms the cloud-top temperature slightly. Changing the latent heat of fusion reduces the cloud fraction at high altitudes, but does not significantly change temperature at which cloud fraction peaks in the upper troposphere. The relationship between radiatively driven horizontal mass convergence and cloud fraction that causes cloud temperature to be insensitive to surface temperature is preserved when a large model domain is used so that convection aggregates in a small part of the model domain.


2006 ◽  
Vol 19 (20) ◽  
pp. 5455-5464 ◽  
Author(s):  
Ken Minschwaner ◽  
Andrew E. Dessler ◽  
Parnchai Sawaengphokhai

Abstract Relationships between the mean humidity in the tropical upper troposphere and tropical sea surface temperatures in 17 coupled ocean–atmosphere global climate models were investigated. This analysis builds on a prior study of humidity and surface temperature measurements that suggested an overall positive climate feedback by water vapor in the tropical upper troposphere whereby the mean specific humidity increases with warmer sea surface temperature (SST). The model results for present-day simulations show a large range in mean humidity, mean air temperature, and mean SST, but they consistently show increases in upper-tropospheric specific humidity with warmer SST. The model average increase in water vapor at 250 mb with convective mean SST is 44 ppmv K−1, with a standard deviation of 14 ppmv K−1. Furthermore, the implied feedback in the models is not as strong as would be the case if relative humidity remained constant in the upper troposphere. The model mean decrease in relative humidity is −2.3% ± 1.0% K−1 at 250 mb, whereas observations indicate decreases of −4.8% ± 1.7% K−1 near 215 mb. These two values agree within the respective ranges of uncertainty, indicating that current global climate models are simulating the observed behavior of water vapor in the tropical upper troposphere with reasonable accuracy.


2016 ◽  
Vol 9 (8) ◽  
pp. 3755-3768 ◽  
Author(s):  
Holger Vömel ◽  
Tatjana Naebert ◽  
Ruud Dirksen ◽  
Michael Sommer

Abstract. Long time series of observations of essential climate variables in the troposphere and stratosphere are often impacted by inconsistencies in instrumentation and ambiguities in the interpretation of the data. To reduce these problems of long-term data series, all measurements should include an estimate of their uncertainty and a description of their sources. Here we present an update of the uncertainties for tropospheric and stratospheric water vapor observations using the cryogenic frost point hygrometer (CFH). The largest source of measurement uncertainty is the controller stability, which is discussed here in detail. We describe a method to quantify this uncertainty for each profile based on the measurements. We also show the importance of a manufacturer-independent ground check, which is an essential tool to continuously monitor the uncertainty introduced by instrument variability. A small bias, which has previously been indicated in lower tropospheric measurements, is described here in detail and has been rectified. Under good conditions, the total from all sources of uncertainty of frost point or dew point measurements using the CFH can be better than 0.2 K. Systematic errors, which are most likely to impact long-term climate series, are verified to be less than 0.1 K. The impact of the radiosonde pressure uncertainty on the mixing ratio for properly processed radiosondes is considered small. The mixing ratio uncertainty may be as low as 2 to 3 %. The impact of the ambient temperature uncertainty on relative humidity (RH) is generally larger than that of the frost point uncertainty. The relative RH uncertainty may be as low as 2 % in the lower troposphere and 5 % in the tropical tropopause region.


2008 ◽  
Vol 25 (10) ◽  
pp. 1768-1777 ◽  
Author(s):  
V. Mattioli ◽  
E. R. Westwater ◽  
D. Cimini ◽  
A. J. Gasiewski ◽  
M. Klein ◽  
...  

Abstract In a recent paper by Mattioli et al., a significant difference was observed between upper-tropospheric and lower-stratospheric water vapor profiles as observed by two radiosonde systems operating in the Arctic. The first was the Vaisala RS90 system as operated by the U.S. Department of Energy’s Atmospheric Radiation Measurement Program; the second was the operational radiosondes launched by the U.S. National Weather Service that used the Sippican VIZ-B2 type. Observations of precipitable water vapor by ground-based microwave radiometers and GPS did not reveal these differences. However, both the microwave radiometer profiler (MWRP) and the ground-based scanning radiometer (GSR) contain channels that receive a significant response from the upper-tropospheric region. In this paper, it is shown that brightness temperature (Tb) observations from these instruments are in consistent agreement with calculations based on the RS90 data but differ by several degrees with calculations based on the VIZ radiosondes. It is also shown that calculations of Tb can serve as a gross quality control of upper-tropospheric soundings.


Sign in / Sign up

Export Citation Format

Share Document