scholarly journals Observations of the Origin and Distribution of Ice in Cold, Warm, and Occluded Frontal Systems during the DIAMET Campaign

2014 ◽  
Vol 142 (11) ◽  
pp. 4230-4255 ◽  
Author(s):  
G. Lloyd ◽  
C. Dearden ◽  
T. W. Choularton ◽  
J. Crosier ◽  
K. N. Bower

Abstract Three case studies in frontal clouds from the Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project are described to understand the microphysical development of the mixed phase regions of these clouds. The cases are a kata-type cold front, a wintertime warm front, and a summertime occluded frontal system. The clouds were observed by radar, satellite, and in situ microphysics measurements from the U.K. Facility for Airborne Atmospheric Measurements (FAAM) research aircraft. The kata cold front cloud was shallow with a cloud-top temperature of approximately −13°C. Cloud-top heterogeneous ice nucleation was found to be consistent with predictions by a primary ice nucleation scheme. The other case studies had high cloud tops (< −40°C) and despite no direct cloud-top measurements in these regions, homogeneous ice nucleation would be expected. The maximum ice crystal concentrations and ice water contents in all clouds were observed at temperatures around −5°C. Graupel was not observed, hence, secondary ice was produced by riming on snow falling through regions of supercooled liquid water. Within these regions substantial concentrations (10–150 L−1) of supercooled drizzle were observed. The freezing of these drops increases the riming rate due to the increase in rimer surface area. Increasing rime accretion has been shown to lead to higher ice splinter production rates. Despite differences in the cloud structure, the maximum ice crystal number concentration in all three clouds was ~100 L−1. Ice water contents were similar in the warm and occluded frontal cases, where median values in both cases reached ~0.2–0.3 g m−3, but lower in the cold front case.

2019 ◽  
Vol 116 (6) ◽  
pp. 2009-2014 ◽  
Author(s):  
Martin Fitzner ◽  
Gabriele C. Sosso ◽  
Stephen J. Cox ◽  
Angelos Michaelides

When an ice crystal is born from liquid water, two key changes occur: (i) The molecules order and (ii) the mobility of the molecules drops as they adopt their lattice positions. Most research on ice nucleation (and crystallization in general) has focused on understanding the former with less attention paid to the latter. However, supercooled water exhibits fascinating and complex dynamical behavior, most notably dynamical heterogeneity (DH), a phenomenon where spatially separated domains of relatively mobile and immobile particles coexist. Strikingly, the microscopic connection between the DH of water and the nucleation of ice has yet to be unraveled directly at the molecular level. Here we tackle this issue via computer simulations which reveal that (i) ice nucleation occurs in low-mobility regions of the liquid, (ii) there is a dynamical incubation period in which the mobility of the molecules drops before any ice-like ordering, and (iii) ice-like clusters cause arrested dynamics in surrounding water molecules. With this we establish a clear connection between dynamics and nucleation. We anticipate that our findings will pave the way for the examination of the role of dynamical heterogeneities in heterogeneous and solution-based nucleation.


2017 ◽  
Vol 17 (7) ◽  
pp. 4731-4749 ◽  
Author(s):  
Chenglai Wu ◽  
Xiaohong Liu ◽  
Minghui Diao ◽  
Kai Zhang ◽  
Andrew Gettelman ◽  
...  

Abstract. In this study we evaluate cloud properties simulated by the Community Atmosphere Model version 5 (CAM5) using in situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) campaign for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes and even higher (94.3 %) for ice clouds (T ≤ −40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 µm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.


2017 ◽  
Author(s):  
Chenglai Wu ◽  
Xiaohong Liu ◽  
Minghui Diao ◽  
Kai Zhang ◽  
Andrew Gettelman ◽  
...  

Abstract. In this study we evaluate cloud properties simulated by the Community Atmosphere Model Version 5 (CAM5) using in-situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes, and even higher (94.3 %) for ice clouds (T ≤ −40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 μm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.


1994 ◽  
Vol 116 (3) ◽  
pp. 173-179 ◽  
Author(s):  
R. Coger ◽  
B. Rubinsky ◽  
G. Fletcher

This study examines the effect of thermal hysteresis proteins (THPs) from the winter flounder (Psuedopleuronectes americanus) on the ice-water interface morphology during freezing of aqueous solutions. Experiments were performed using a directional solidification stage, and the development of the two-phase interface was observed through a microscope and recorded by a video system. Unusual ice crystal morphologies were observed, including faceted ice crystal growth along the [1100] crystal plane; spicular or needlelike growth in the [1010] direction; and growth parallel to the c-axis, [0001], consisting of incorporated liquid inclusions bounded by hexagonal prism faces. The observed crystallographic structures can be explained as an effect of the interaction between the THPs and the primary prism faces of ice crystals. This results in an increase in the Gibbs free energy of these planes, followed by ice growth into the supercooled liquid adjacent to these faces.


2005 ◽  
Vol 44 (10) ◽  
pp. 1544-1562 ◽  
Author(s):  
Matthew D. Shupe ◽  
Taneil Uttal ◽  
Sergey Y. Matrosov

Abstract An operational suite of ground-based, remote sensing retrievals for producing cloud microphysical properties is described, assessed, and applied to 1 yr of observations in the Arctic. All measurements were made in support of the Surface Heat Budget of the Arctic (SHEBA) program and First International Satellite Cloud Climatology Project Regional Experiment (FIRE) Arctic Clouds Experiment (ACE) in 1997–98. Retrieval techniques and cloud-type classifications are based on measurements from a vertically pointing 35-GHz Doppler radar, microwave and infrared radiometers, and radiosondes. The retrieval methods are assessed using aircraft in situ measurements from a limited set of case studies and by intercomparison of multiple retrievals for the same parameters. In all-liquid clouds, retrieved droplet effective radii Re have an uncertainty of up to 32% and liquid water contents (LWC) have an uncertainty of 49%–72%. In all-ice clouds, ice particle mean sizes Dmean can be retrieved with an uncertainty of 26%–46% while retrieved ice water contents (IWC) have an uncertainty of 62%–100%. In general, radar-only, regionally tuned empirical power-law retrievals were best suited among the tested retrieval algorithms for operational cloud monitoring at SHEBA because of their wide applicability, ease of use, and reasonable statistical accuracy. More complex multisensor techniques provided a moderate improvement in accuracy for specific case studies and were useful for deriving location-specific coefficients for the empirical retrievals but were not as frequently applicable as the single sensor methods because of various limitations. During the yearlong SHEBA program, all-liquid clouds were identified 19% of the time and were characterized by an annual average droplet Re of 6.5 μm, LWC of 0.10 g m−3, and liquid water path of 45 g m−2. All-ice clouds were identified 38% of the time with an annual average particle Dmean of 73 μm, IWC of 0.014 g m−3, and ice water path of 30 g m−2.


2021 ◽  
Author(s):  
Pooja Verma ◽  
Ulrike Burkhardt

Abstract. Contrail formation within natural cirrus introduces large perturbations in cirrus ice crystal number concentrations leading to modifications in cirrus microphysical and optical properties. The number of contrail ice crystals formed in an aircraft plume depends on the atmospheric state and aircraft and fuel properties. Our aim is to study the impact of pre-existing cirrus on the contrail formation processes. We analyze contrail ice nucleation within cirrus and the survival of contrail ice crystals within the vortex phase and their change due to the presence of cirrus ice crystals within the high-resolution ICON-LEM at a horizontal resolution of 625 m over Germany. We have selected two different synoptic situations sampling a large range of cirrus cloud properties from very thick cirrus connected with a frontal system to very thin cirrus within a high-pressure system. We find that contrail formation within cirrus often leads to increases in cirrus ice crystal numbers by a few orders of magnitude. Pre-existing cirrus has an impact on contrail ice crystal number concentrations only if the cirrus is optically thick. In thick cirrus, contrail ice nucleation rates and ice crystal survival rates within the vortex phase are both increased. The sublimation of the cirrus ice crystals sucked into and subsequently sublimated within the aircraft’s engine leads to an increase in the contrail formation threshold by up to 0.7 K which causes an increase in the number of nucleated contrail ice crystals. This increase can be large at lower flight levels where ambient temperatures are close to the contrail formation threshold temperature and when the ice water content of the pre-existing cirrus cloud is large. During the contrail’s vortex phase the aircraft plume is trapped within the descending vortices in which the decrease in plume relative humidity leads to the sublimation of contrail ice crystals. This contrail ice crystal loss can be modified by the cirrus ice crystals that are mixed into the plume before the start of the vortex phase. In particular, high ice crystal number concentrations and large ice water content of the pre-existing cirrus cloud or low contrail ice crystal numbers are associated with significant increases in the contrail ice crystal survival rates.


2013 ◽  
Vol 71 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Gianni Santachiara ◽  
Franco Belosi ◽  
Franco Prodi

Abstract This paper addresses the problem of the large discrepancies between ice crystal concentrations in clouds and the number of ice nuclei in nearby clear air reported in published papers. Such discrepancies cannot always be explained, even by taking into account both primary and secondary ice formation processes. A laboratory experiment was performed in a cylindrical column placed in a cold room at atmospheric pressure and temperature in the −12° to −14°C range. Supercooled droplets were nucleated in the column, in the absence of aerosol ice nuclei, by injecting ice crystals generated outside in a small syringe. A rapid increase in the ice crystal concentration was observed in the absence of any known ice multiplication. The ratio between the mean number of ice crystals in the column, after complete droplet vaporization, and the number of ice crystals introduced in the column was about 10:1. The presence of small ice crystals (introduced at the top of the column) in the unstable system (supercooled droplets) appears to trigger the transformation in the whole supercooled liquid cloud. A possible explanation could be that the rapidly evaporating droplets cool sufficiently to determine a homogeneous nucleation.


2011 ◽  
Vol 24 (9) ◽  
pp. 2405-2418 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton

Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 observations from the Terra satellite are used to create a 3-yr climatology of cloud-top phase over a section of the Southern Ocean (south of Australia) and the North Pacific Ocean. The intent is to highlight the extensive presence of supercooled liquid water over the Southern Ocean region, particularly during summer. The phase of such clouds directly affects the absorbed shortwave radiation, which has recently been found to be “poorly simulated in both state-of-the-art reanalysis and coupled global climate models” (Trenberth and Fasullo). The climatology finds that supercooled liquid water is present year-round in the low-altitude clouds across this section of the Southern Ocean. Further, the MODIS cloud phase algorithm identifies very few glaciated cloud tops at temperatures above −20°C, rather inferring a large portion of “uncertain” cloud tops. Between 50° and 60°S during the summer, the albedo effect is compounded by a seasonal reduction in high-level cirrus. This is in direct contrast to the Bering Sea and Gulf of Alaska. Here MODIS finds a higher likelihood of observing warm liquid water clouds during summer and a reduction in the relative frequency of cloud tops within the 0° to −20°C temperature range. As the MODIS cloud phase product has limited ability to confidently identify cloud-top phase between −5° and −25°C, future research should include observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and other space-based sensors to help with the classification within this temperature range. Further, multiregion in situ verification of any remotely sensed observations is vital to further understanding the cloud phase processes.


2010 ◽  
Vol 138 (3) ◽  
pp. 839-862 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton ◽  
Alex Nazarov

Abstract The cloud structure associated with two frontal passages over the Southern Ocean and Tasmania is investigated. The first event, during August 2006, is characterized by large quantities of supercooled liquid water and little ice. The second case, during October 2007, is more mixed phase. The Weather Research and Forecasting model (WRFV2.2.1) is evaluated using remote sensed and in situ observations within the post frontal air mass. The Thompson microphysics module is used to describe in-cloud processes, where ice is initiated using the Cooper parameterization at temperatures lower than −8°C or at ice supersaturations greater than 8%. The evaluated cases are then used to numerically investigate the prevalence of supercooled and mixed-phase clouds over Tasmania and the ocean to the west. The simulations produce marine stratocumulus-like clouds with maximum heights of between 3 and 5 km. These are capped by weak temperature and strong moisture inversions. When the inversion is at temperatures warmer than −10°C, WRF produces widespread supercooled cloud fields with little glaciation. This is consistent with the limited in situ observations. When the inversion is at higher altitudes, allowing cooler cloud tops, glaciated (and to a lesser extent mixed phase) clouds are more common. The simulations are further explored to evaluate any orographic signature within the cloud structure over Tasmania. No consistent signature is found between the two cases.


2012 ◽  
Vol 12 (14) ◽  
pp. 6609-6628 ◽  
Author(s):  
M. W. Gallagher ◽  
P. J. Connolly ◽  
I. Crawford ◽  
A. Heymsfield ◽  
K. N. Bower ◽  
...  

Abstract. Aircraft measurements of the microphysics of a tropical convective anvil (at temperatures ~−60 °C) forming above the Hector storm, over the Tiwi Islands, Northern Australia, have been conducted with a view to determining ice crystal aggregation efficiencies from in situ measurements. The observed microphysics have been compared to an explicit bin-microphysical model of the anvil region, which includes crystal growth by vapour diffusion and aggregation and the process of differential sedimentation. It has been found in flights made using straight and level runs perpendicular to the storm that the number of ice crystals initially decreased with distance from the storm as aggregation took place resulting in larger crystals, followed by their loss from the cloud layer due to sedimentation. The net result was that the mass (i.e. Ice Water Content) in the anvil Ci cloud decreased, but also that the average particle size (weighted by number) remained relatively constant along the length of the anvil outflow. Comparisons with the explicit microphysics model showed that the changes in the shapes of the ice crystal spectra as a function of distance from the storm could be explained by the model if the aggregation efficiency was set to values of Eagg~0.5 and higher. This result is supported by recent literature on aggregation efficiencies for complex ice particles and suggests that either the mechanism of particle interlocking is important to the aggregation process, or that other effects are occuring, such as enhancement of ice-aggregation by high electric fields that arise as a consequence of charge separation within the storm. It is noteworthy that this value of the ice crystal aggregation efficiency is much larger than values used in cloud resolving models at these temperatures, which typically use E~0.0016. These results are important to understanding how cold clouds evolve in time and for the treatment of the evolution of tropical Ci in numerical models.


Sign in / Sign up

Export Citation Format

Share Document