Formation of Nocturnal Offshore Rainfall near the West Coast of Sumatra: Land Breeze or Gravity Wave?

2021 ◽  
Vol 149 (3) ◽  
pp. 715-731
Author(s):  
Hedanqiu Bai ◽  
Gumilang Deranadyan ◽  
Courtney Schumacher ◽  
Aaron Funk ◽  
Craig Epifanio ◽  
...  

AbstractAfternoon deep convection over the Maritime Continent islands propagates offshore in the evening to early morning hours, leading to a nocturnal rainfall maximum over the nearby ocean. This work investigates the formation of the seaward precipitation migration off western Sumatra and its intraseasonal and seasonal characteristics using BMKG C-band radar observations from Padang and ERA5 reanalysis. A total of 117 nocturnal offshore rainfall events were identified in 2018, with an average propagation speed of 4.5 m s−1 within 180 km of Sumatra. Most offshore propagation events occur when the Madden–Julian oscillation (MJO) is either weak (real-time multivariate MJO index < 1) or active over the Indian Ocean (phases 1–3), whereas very few occur when the MJO is active over the Maritime Continent and western Pacific Ocean (phases 4–6). The occurrence of offshore rainfall events also varies on the basis of the seasonal evolution of the large-scale circulation associated with the Asian–Australian monsoons, with fewer events during the monsoon seasons of December–February and June–August and more during the transition seasons of March–May and September–November. Low-level convergence, resulting from the interaction of the land breeze and background low-level westerlies, is found to be the primary driver for producing offshore convective rain propagation from the west coast of Sumatra. Stratiform rain propagation speeds are further increased by upper-level easterlies, which explains the faster migration speed of high reflective clouds observed by satellite. However, temperature anomalies associated with daytime convective latent heating over Sumatra indicate that gravity waves may also modulate the offshore environment to be conducive to seaward convection migration.

2013 ◽  
Vol 141 (11) ◽  
pp. 3851-3872 ◽  
Author(s):  
James H. Ruppert ◽  
Richard H. Johnson ◽  
Angela K. Rowe

Abstract The diurnal cycle of the local circulation, rainfall, and heat and moisture budgets is investigated in Taiwan's heavy rain (mei-yu) season using data from the 2008 Southwest Monsoon Experiment/Terrain-influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX). Comparisons are made between an undisturbed (UNDIST; 22–29 May) and disturbed period (DIST; 31 May–4 June). Many aspects of the diurnal evolution in surface flows and rainfall were similar during both periods. At night and during early morning hours, the low-level southwesterly flow was deflected around Taiwan's main topographic barrier, the Central Mountain Range (CMR), with rainfall focused near areas of enhanced offshore confluence created by downslope and land-breeze flows. During the day, the flow switched to onshore and upslope, rainfall shifted inland, and deep convection developed along the coastal plains and windward slopes. Atmospheric budget analysis indicates a day-to-evening transition of convective structure from shallow to deep to stratiform. Evaporation associated with the evening/nighttime stratiform precipitation likely assisted the nocturnal katabatic flow. Though the flow impinging on Taiwan was blocked during both periods, a very moist troposphere and strengthened low-level oncoming flow during DIST resulted in more widespread and intense rainfall that was shifted to higher elevations, which resembled a more weakly blocked regime. Correspondingly, storm cores were tilted upslope during DIST, in contrast to the more erect storms characteristic of UNDIST. There were much more lofted precipitation-sized ice hydrometeors within storms during DIST, the upslope advection of which led to extensive stratiform rain regions overlying the CMR peaks, and the observed upslope shift in rainfall.


2006 ◽  
Vol 134 (11) ◽  
pp. 3092-3108 ◽  
Author(s):  
Robert Goler ◽  
Michael J. Reeder ◽  
Roger K. Smith ◽  
Harald Richter ◽  
Sarah Arnup ◽  
...  

Abstract Observations of dry-season north Australian cloud lines (NACLs) that form in the Gulf of Carpentaria region of northern Australia and the sea-breeze circulations that initiate them are described. The observations were made during the 2002 Gulf Lines Experiment (GLEX) and include measurements made by an instrumented research aircraft. The observations are compared with numerical simulations made from a two-dimensional cloud-scale model. Particular emphasis is placed on the interaction between the east coast and west coast sea breezes near the west coast of Cape York Peninsula. The sea breezes are highly asymmetric due to the low-level easterly synoptic flow over the peninsula. The west coast sea breeze is well defined with a sharp leading edge since the opposing flow limits its inland penetration, keeping it close to its source of cold air. In contrast, the east coast sea breeze is poorly defined since it is aided by the easterly flow and becomes highly modified by daytime convective mixing as it crosses over the peninsula. Both the observations and the numerical model show that, in the early morning hours, the mature NACL forms at the leading edge of a gravity current. The numerical model simulations show that this gravity current arises as a westward-moving land breeze from Cape York Peninsula. Convergence at the leading edge of this land breeze is accompanied by ascent, which when strong enough produces cloud. Observations show that the decay of the NACL is associated with a decline in the low-level convergence and a weakening of the ascent.


2010 ◽  
Vol 23 (4) ◽  
pp. 905-917 ◽  
Author(s):  
Haoming Chen ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Tianjun Zhou

Abstract Hourly observational records and 6-hourly reanalysis data were used to investigate the influences of large-scale forcings on the diurnal variation of summer rainfall along the Yangtze River (YR). The results show that long-duration (more than six hours) rainfall events dominate the summer rainfall along the YR. These events tend to start during the night and to peak after several hours of development. The eastward-delayed initiation of the nocturnal long-duration rainfall events is thought to be due to the diurnal clockwise rotation of the low-tropospheric circulation, especially the accelerated nocturnal southwesterlies. In the early evening, the anomalous easterly flow toward the Tibetan Plateau (TP) causes low-level convergence over the Plateau’s eastern slope that induces the formation of rainfall in the upper YR valley. The anomalous wind sequentially rotates clockwise to a southerly flow at midnight and accelerates the meridional wind in the middle valley, resulting in the initiation of rainfall between 2300 and 0300 LST. In the early morning, the accelerated southwesterlies in southern China, when combined with decelerated winds in the north of the YR, causes a strong convergence along the YR and contributes to the early morning rainfall in the lower valley. Furthermore, the development of the convection systems is suppressed in the afternoon by the mid- and low-level warm advection downstream from the TP. This helps explain why long-duration events do not typically start in the afternoon in the upper YR valley.


1963 ◽  
Vol 20 (4) ◽  
pp. 939-967 ◽  
Author(s):  
Robert K. Lane

Oceanographic data collected in a line of stations extending seaward of the west coast of Vancouver Island, British Columbia, were reviewed and analyzed. On the basis of these data and the large-scale meteorological processes of wind, insolation, and precipitation, the characteristic structure of temperature and salinity in the coastal region was denned in five temporal stages throughout the year. These stages are presented as vertical sections along the line with characteristic ranges of values to be found in each of the structural elements.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Furqon Alfahmi ◽  
Rizaldi Boer ◽  
Rahmat Hidayat ◽  
Perdinan ◽  
Ardhasena Sopaheluwakan

Indonesian Maritime Continent has the second longest coastline in the world, but the characteristics of offshore rainfall and its relation to coastline type are not clearly understood. As a region with eighty percent being an ocean, knowledge of offshore rainfall is important to support activity over oceans. This study investigates the climatology of offshore rainfall based on TRMM 3B42 composite during 1998-2015 and its dynamical atmosphere which induces high rainfall intensity using WRF-ARW. The result shows that concave coastline drives the increasing rainfall over ocean with Cenderawasih Bay (widest concave coastline) having the highest rainfall offshore intensity (16.5 mm per day) over Indonesian Maritime Continent. Monthly peak offshore rainfall over concave coastline is related to direction of concave coastline and peak of diurnal cycle influenced by the shifting of low level convergence. Concave coastline facing the north has peak during northwesterly monsoonal flow (March), while concave coastline facing the east has peak during easterly monsoonal flow (July). Low level convergence zone shifts from inland during daytime to ocean during nighttime. Due to shape of concave coastline, land breeze strengthens low level convergence and supports merging rainfall over ocean during nighttime. Rainfall propagating from the area around inland to ocean is approximately 5.4 m/s over Cenderawasih Bay and 4.1 m/s over Tolo Bay. Merger rainfall and low level convergence are playing role in increasing offshore rainfall over concave coastline.


2009 ◽  
Vol 27 (10) ◽  
pp. 4023-4037 ◽  
Author(s):  
K. M. Lau ◽  
K. M. Kim ◽  
Y. C. Sud ◽  
G. K. Walker

Abstract. The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerly flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer over the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.


2009 ◽  
Vol 99 (6) ◽  
pp. 739-749 ◽  
Author(s):  
S. Prospero ◽  
N. J. Grünwald ◽  
L. M. Winton ◽  
E. M. Hansen

Phytophthora ramorum (oomycetes) is the causal agent of sudden oak death and ramorum blight on trees, shrubs, and woody ornamentals in the forests of coastal California and southwestern Oregon and in nurseries of California, Oregon, and Washington. In this study, we investigated the genetic structure of P. ramorum on the West Coast of the United States, focusing particularly on population differentiation potentially indicative of gene flow. In total, 576 isolates recovered from 2001 to 2005 were genotyped at 10 microsatellite loci. Our analyses of genetic diversity and inferences of reproductive mode confirm previous results for the Oregon and California populations, with the strong majority of the genotypes belonging to the NA1 clonal lineage and showing no evidence for sexual reproduction. The high incidence of genotypes shared among populations and the lack of genetic structure among populations show that important large-scale, interpopulation genetic exchanges have occurred. This emphasizes the importance of human activity in shaping the current structure of the P. ramorum population on the West Coast of the United States.


2010 ◽  
Vol 95 (4) ◽  
pp. 367-378 ◽  
Author(s):  
S. Indira Rani ◽  
Radhika Ramachandran ◽  
D. Bala Subrahamanyam ◽  
Denny P. Alappattu ◽  
P.K. Kunhikrishnan

Sign in / Sign up

Export Citation Format

Share Document