Growth of Mesoscale Convective Systems in Observations and a Seasonal Convection-Permitting Simulation over Argentina

2021 ◽  
Vol 149 (10) ◽  
pp. 3469-3490
Author(s):  
Zhixiao Zhang ◽  
Adam Varble ◽  
Zhe Feng ◽  
Joseph Hardin ◽  
Edward Zipser

AbstractA 6.5-month, convection-permitting simulation is conducted over Argentina covering the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) field campaign and is compared with observations to evaluate mesoscale convective system (MCS) growth prediction. Observed and simulated MCSs are consistently identified, tracked, and separated into growth, mature, and decay stages using top-of-the-atmosphere infrared brightness temperature and surface rainfall. Simulated MCS number, lifetime, seasonal and diurnal cycles, and various cloud-shield characteristics including growth rate are similar to those observed. However, the simulation produces smaller rainfall areas, greater proportions of heavy rainfall, and faster system propagations. Rainfall area is significantly underestimated for long-lived MCSs but not for shorter-lived MCSs, and rain rates are always overestimated. These differences result from a combination of model and satellite retrieval biases, in which simulated MCS rain rates are shifted from light to heavy, while satellite-retrieved rainfall is too frequent relative to rain gauge estimates. However, the simulation reproduces satellite-retrieved MCS cloud-shield evolution well, supporting its usage to examine environmental controls on MCS growth. MCS initiation locations are associated with removal of convective inhibition more than maximized low-level moisture convergence or instability. Rapid growth is associated with a stronger upper-level jet (ULJ) and a deeper northwestern Argentinean low that causes a stronger northerly low-level jet (LLJ), increasing heat and moisture fluxes, low-level vertical wind shear, baroclinicity, and instability. Sustained growth corresponds to similar LLJ, baroclinicity, and instability conditions but is less sensitive to the ULJ, large-scale vertical motion, or low-level shear. Growth sustenance controls MCS maximum extent more than growth rate.

2014 ◽  
Vol 142 (8) ◽  
pp. 2838-2859 ◽  
Author(s):  
Buo-Fu Chen ◽  
Russell L. Elsberry ◽  
Cheng-Shang Lee

Abstract Outer mesoscale convective systems (OMCSs) are long-lasting, heavy rainfall events separate from the inner-core rainfall that have previously been shown to occur in 22% of western North Pacific tropical cyclones (TCs). Environmental conditions accompanying the development of 62 OMCSs are contrasted with the conditions in TCs that do not include an OMCS. The development, kinematic structure, and maintenance mechanisms of an OMCS that occurred to the southwest of Typhoon Fengshen (2008) are studied with Weather Research and Forecasting Model simulations. Quick Scatterometer (QuikSCAT) observations and the simulations indicate the low-level TC circulation was deflected around the Luzon terrain and caused an elongated, north–south moisture band to be displaced to the west such that the OMCS develops in the outer region of Fengshen rather than spiraling into the center. Strong northeasterly vertical wind shear contributed to frictional convergence in the boundary layer, and then the large moisture flux convergence in this moisture band led to the downstream development of the OMCS when the band interacted with the monsoon flow. As the OMCS developed in the region of low-level monsoon westerlies and midlevel northerlies associated with the outer circulation of Fengshen, the characteristic structure of a rear-fed inflow with a leading stratiform rain area in the cross-line direction (toward the south) was established. A cold pool (Δθ < −3 K) associated with the large stratiform precipitation region led to continuous formation of new cells at the leading edge of the cold pool, which contributed to the long duration of the OMCS.


2011 ◽  
Vol 139 (8) ◽  
pp. 2367-2385 ◽  
Author(s):  
Hsiao-Wei Lai ◽  
Christopher A. Davis ◽  
Ben Jong-Dao Jou

AbstractThis study examines a subtropical oceanic mesoscale convective vortex (MCV) that occurred from 1800 UTC 4 June to 1200 UTC 6 June 2008 during intensive observing period (IOP) 6 of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). A dissipating mesoscale convective system reorganized within a nearly barotropic vorticity strip, which formed as a southwesterly low-level jet developed to the south of subsiding easterly flow over the southern Taiwan Strait. A cyclonic circulation was revealed on the northern edge of the mesoscale rainband with a horizontal scale of 200 km. An inner subvortex, on a scale of 25–30 km with maximum shear vorticity of 3 × 10−3 s−1, was embedded in the stronger convection. The vortex-relative southerly flow helped create local potential instability favorable for downshear convection enhancement. Strong low-level convergence suggests that stretching occurred within the MCV. Higher θe air, associated with significant potential and conditional instability, and high reflectivity signatures near the vortex center suggest that deep moist convection was responsible for the vortex stretching. Dry rear inflow penetrated into the MCV and suppressed convection in the upshear direction. A mesolow was also roughly observed within the larger vortex. The presence of intense vertical wind shear in the higher troposphere limited the vortex vertical extent to about 6 km.


2020 ◽  
pp. 1-62
Author(s):  
Zhe Feng ◽  
Fengfei Song ◽  
Koichi Sakaguchi ◽  
L. Ruby Leung

AbstractA process-oriented approach is developed to evaluate warm-season mesoscale convective system (MCS) precipitation and their favorable large-scale meteorological patterns (FLSMPs) over the U.S. This approach features a novel observation-driven MCS-tracking algorithm using infrared brightness temperature and precipitation feature at 12, 25 and 50 km resolution and metrics to evaluate the model large-scale environment favorable for MCS initiation. The tracking algorithm successfully reproduces the observed MCS statistics from a reference 4-km radar MCS database. To demonstrate the utility of the new methodologies in evaluating MCS in climate simulations with mesoscale resolution, the process-oriented approach is applied to two climate simulations produced by the Variable-Resolution Model for Prediction Across Scales coupled to the Community Atmosphere Model physics, with refined horizontal grid spacing at 50 km and 25 km over North America. With the tracking algorithm applied to simulations and observations at equivalent resolutions, the simulated number of MCS and associated precipitation amount, frequency and intensity are found to be consistently underestimated in the Central U.S., particularly from May to August. The simulated MCS precipitation shows little diurnal variation and lasts too long, while MCS precipitation area is too large and intensity is too weak. The model is able to simulate four types of observed FLSMP associated with frontal systems and low-level jets (LLJ) in spring, but the frequencies are underestimated because of low-level dry bias and weaker LLJ. Precipitation simulated under different FLSMPs peak during daytime, in contrast to the observed nocturnal peak. Implications of these findings for future model development and diagnostics are discussed.


2006 ◽  
Vol 7 ◽  
pp. 153-156 ◽  
Author(s):  
J. M. Sánchez-Laulhé

Abstract. This paper describes the evolution of a mesoscale convective system (MCS) developed over the Alboran Sea on 7 February 2005, using surface, upper-air stations, radar and satellite observations, and also data from an operational numerical model. The system developed during the night as a small convective storm line in an environment with slight convective instability, low precipitable water and strong low-level vertical wind shear near coast. The linear MCS moved northwards reaching the Spanish coast. Then it remained trapped along the coast for more than twelve hours, following the coast more than five hundred kilometres. The MCS here described had a fundamental orographic character due to: (1) the generation of a low-level storm inflow parallel to the coast, formed by blocking of the onshore flow by coastal mountains and (2) the orientation of both the mesoscale ascent from the sea towards the coastal mountains and the midlevel rear inflow from the coastal mountains to the sea. The main motivation of this work was to obtain a better understanding of the mechanisms relevant to the formation of heavy rainfall episodes occurring at Spanish Mediterranean coast associated with this kind of stationary or slowly moving MCSs.


2017 ◽  
Vol 30 (11) ◽  
pp. 4021-4035 ◽  
Author(s):  
Bin Wang ◽  
Ja-Yeon Moon

Abstract Modulation of tropical cyclone (TC) genesis by the Madden–Julian oscillation (MJO) has been quantitatively diagnosed by using a climatological genesis potential index (GPI). Analysis of TC genesis during November–April of 1979–2014 indicates the most effective factors controlling intraseasonal TC genesis are 850-hPa relative vorticity weighted by the Coriolis parameter fζr850 and 500-hPa vertical motion ω500. The total vertical wind shear and maximum potential intensity are unimportant, and the role of 600-hPa relative humidity is greatly represented by ω500. The MJO modulates TC genesis primarily through changing low-level vorticity induced by its Rossby wave gyres and meridional shears of equatorial zonal winds. A new intraseasonal GPI (ISGPI) is proposed to quantify the MJO’s modulation of TC genesis. The ISGPI significantly improves representation of intraseasonal variation of TC genesis in the tropics and in each subregion of the southern Indian Ocean, Australian monsoon, and South Pacific. In the hot spots of the Southern Hemisphere TC genesis zone, the probability of TC genesis can differ by a factor of 5–19 as a result of MJO modulation. The results suggest that the large-scale factors controlling TC genesis may vary with different time scales, and the climatological GPI may not be quite applicable for diagnoses of climate variability and future change of TC genesis potential. To simulate realistic impacts of the MJO on TC genesis, general circulation models must reproduce not only realistic eastward propagation but also the MJO low-level circulation structure. Application of the new ISGPI may have a large potential to improve dynamical subseasonal prediction of TC genesis.


2020 ◽  
Vol 77 (12) ◽  
pp. 4233-4249
Author(s):  
Kathleen A. Schiro ◽  
Sylvia C. Sullivan ◽  
Yi-Hung Kuo ◽  
Hui Su ◽  
Pierre Gentine ◽  
...  

AbstractUsing multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale convective system (MCS) precipitation intensity Pmax, environmental moisture, large-scale vertical velocity, and system radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and Pmax emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS Pmax increases sharply with increasing boundary layer and lower free tropospheric (LFT) moisture, with the highest Pmax values originating from MCSs in environments exhibiting a peak in LFT moisture near 750 hPa. MCS Pmax exhibits strikingly similar behavior as a function of water vapor among tropical land and ocean regions. Yet, while the moisture–Pmax relationship depends strongly on mean tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land. Other Pmax-dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity. Larger systems typically contain wider convective cores and higher Pmax, consistent with increased protection from dilution due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally supports greater precipitation production. Last, temporal lead–lag analysis suggests that anomalous moisture in the lower–middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming.


2017 ◽  
Vol 145 (4) ◽  
pp. 1315-1337 ◽  
Author(s):  
Myung-Sook Park ◽  
Myong-In Lee ◽  
Dongmin Kim ◽  
Michael M. Bell ◽  
Dong-Hyun Cha ◽  
...  

Abstract The effects of land-based convection on the formation of Tropical Storm Mekkhala (2008) off the west coast of the Philippines are investigated using the Weather Research and Forecasting Model with 4-km horizontal grid spacing. Five simulations with Thompson microphysics are utilized to select the control-land experiment that reasonably replicates the observed sea level pressure evolution. To demonstrate the contribution of the land-based convection, sensitivity experiments are performed by changing the land of the northern Philippines to water, and all five of these no-land experiments fail to develop Mekkhala. The Mekkhala tropical depression develops when an intense, well-organized land-based mesoscale convective system moves offshore from Luzon and interacts with an oceanic mesoscale system embedded in a strong monsoon westerly flow. Because of this interaction, a midtropospheric mesoscale convective vortex (MCV) organizes offshore from Luzon, where monsoon convection continues to contribute to low-level vorticity enhancement below the midlevel vortex center. In the no-land experiments, widespread oceanic convection induces a weaker midlevel vortex farther south in a strong vertical wind shear zone and subsequently farther east in a weaker monsoon vortex region. Thus, the monsoon convection–induced low-level vorticity remained separate from the midtropospheric MCV, which finally resulted in a failure of the low-level spinup. This study suggests that land-based convection can play an advantageous role in TC formation by influencing the intensity and the placement of the incipient midtropospheric MCV to be more favorable for TC low-level circulation development.


2006 ◽  
Vol 63 (1) ◽  
pp. 268-287 ◽  
Author(s):  
G. M. Heymsfield ◽  
Joanne Simpson ◽  
J. Halverson ◽  
L. Tian ◽  
E. Ritchie ◽  
...  

Abstract Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850–200-hPa shear magnitude range 8–15 m s−1) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5–6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m s−1. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10–12 m s−1.


2019 ◽  
Vol 147 (2) ◽  
pp. 733-761 ◽  
Author(s):  
Manda B. Chasteen ◽  
Steven E. Koch ◽  
David B. Parsons

Abstract Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttime over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.


2016 ◽  
Vol 73 (7) ◽  
pp. 2643-2664 ◽  
Author(s):  
John M. Peters ◽  
Russ S. Schumacher

Abstract This research investigates the dynamics of a simulated training line/adjoining stratiform (TL/AS) mesoscale convective system (MCS), with composite atmospheric fields used as initial and lateral boundary conditions for the simulation. An initial forward-propagating MCS developed within a region of elevated convective instability and low-level lifting associated with warm-air advection along the terminus of the low-level jet. The environmental conditions external to the MCS continued to provide lift, moisture, and instability to the western side of the forward-propagating MCS, and these conditions were initially responsible for backbuilding on the system’s western side. Most parcels that encountered the southwestern outflow boundary were lifted insufficiently far to reach their levels of free convection (LFCs), and their LFC heights were increased by latent heating above them. These parcels continued northeastward beyond the surface outflow boundary (OFB), were gradually lifted, and initiated convection 80–100 km beyond encountering the OFB. Eventually the surface cold pool became sufficiently deep so that gradual ascent of parcels with moisture and instability over the OFB began initiating new convection close to the OFB—this drove backbuilding during the later portion of the MCS lifetime. These results disentangle the relative contributions of large-scale environmental factors and storm-scale processes on the quasi-stationary behavior of the MCS and show that both contributed to upstream backbulding at different times during the MCS life cycle.


Sign in / Sign up

Export Citation Format

Share Document