scholarly journals Multiscale Processes Enabling the Longevity and Daytime Persistence of a Nocturnal Mesoscale Convective System

2019 ◽  
Vol 147 (2) ◽  
pp. 733-761 ◽  
Author(s):  
Manda B. Chasteen ◽  
Steven E. Koch ◽  
David B. Parsons

Abstract Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttime over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.

2012 ◽  
Vol 140 (3) ◽  
pp. 1023-1043 ◽  
Author(s):  
Michael C. Coniglio ◽  
Stephen F. Corfidi ◽  
John S. Kain

Abstract This work presents an analysis of the vertical wind shear during the early stages of the remarkable 8 May 2009 central U.S. derecho-producing convective system. Comments on applying Rotunno–Klemp–Weisman (RKW) theory to mesoscale convective systems (MCSs) of this type also are provided. During the formative stages of the MCS, the near-surface-based shear vectors ahead of the leading convective line varied with time, location, and depth, but the line-normal component of the shear in any layer below 3 km ahead of where the strong bow echo developed was relatively small (6–9 m s−1). Concurrently, the midlevel (3–6 km) line-normal shear component had magnitudes mostly >10 m s−1 throughout. In a previous companion paper, it was hypothesized that an unusually strong and expansive low-level jet led to dramatic changes in instability, shear, and forced ascent over mesoscale areas. These mesoscale effects may have overwhelmed the interactions between the cold pool and low-level shear that modulate system structure in less complex environments. If cold pool–shear interactions were critical to producing such a strong system, then the extension of the line-normal shear above 3 km also appeared to be critical. It is suggested that RKW theory be applied with much caution, and that examining the shear above 3 km is important, if one wishes to explain the formation and maintenance of intense long-lived convective systems, particularly complex nocturnal systems like the one that occurred on 8 May 2009.


2014 ◽  
Vol 142 (8) ◽  
pp. 2838-2859 ◽  
Author(s):  
Buo-Fu Chen ◽  
Russell L. Elsberry ◽  
Cheng-Shang Lee

Abstract Outer mesoscale convective systems (OMCSs) are long-lasting, heavy rainfall events separate from the inner-core rainfall that have previously been shown to occur in 22% of western North Pacific tropical cyclones (TCs). Environmental conditions accompanying the development of 62 OMCSs are contrasted with the conditions in TCs that do not include an OMCS. The development, kinematic structure, and maintenance mechanisms of an OMCS that occurred to the southwest of Typhoon Fengshen (2008) are studied with Weather Research and Forecasting Model simulations. Quick Scatterometer (QuikSCAT) observations and the simulations indicate the low-level TC circulation was deflected around the Luzon terrain and caused an elongated, north–south moisture band to be displaced to the west such that the OMCS develops in the outer region of Fengshen rather than spiraling into the center. Strong northeasterly vertical wind shear contributed to frictional convergence in the boundary layer, and then the large moisture flux convergence in this moisture band led to the downstream development of the OMCS when the band interacted with the monsoon flow. As the OMCS developed in the region of low-level monsoon westerlies and midlevel northerlies associated with the outer circulation of Fengshen, the characteristic structure of a rear-fed inflow with a leading stratiform rain area in the cross-line direction (toward the south) was established. A cold pool (Δθ < −3 K) associated with the large stratiform precipitation region led to continuous formation of new cells at the leading edge of the cold pool, which contributed to the long duration of the OMCS.


2011 ◽  
Vol 139 (8) ◽  
pp. 2367-2385 ◽  
Author(s):  
Hsiao-Wei Lai ◽  
Christopher A. Davis ◽  
Ben Jong-Dao Jou

AbstractThis study examines a subtropical oceanic mesoscale convective vortex (MCV) that occurred from 1800 UTC 4 June to 1200 UTC 6 June 2008 during intensive observing period (IOP) 6 of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). A dissipating mesoscale convective system reorganized within a nearly barotropic vorticity strip, which formed as a southwesterly low-level jet developed to the south of subsiding easterly flow over the southern Taiwan Strait. A cyclonic circulation was revealed on the northern edge of the mesoscale rainband with a horizontal scale of 200 km. An inner subvortex, on a scale of 25–30 km with maximum shear vorticity of 3 × 10−3 s−1, was embedded in the stronger convection. The vortex-relative southerly flow helped create local potential instability favorable for downshear convection enhancement. Strong low-level convergence suggests that stretching occurred within the MCV. Higher θe air, associated with significant potential and conditional instability, and high reflectivity signatures near the vortex center suggest that deep moist convection was responsible for the vortex stretching. Dry rear inflow penetrated into the MCV and suppressed convection in the upshear direction. A mesolow was also roughly observed within the larger vortex. The presence of intense vertical wind shear in the higher troposphere limited the vortex vertical extent to about 6 km.


2017 ◽  
Vol 145 (6) ◽  
pp. 2177-2200 ◽  
Author(s):  
Russ S. Schumacher ◽  
John M. Peters

Abstract This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.


2006 ◽  
Vol 7 ◽  
pp. 153-156 ◽  
Author(s):  
J. M. Sánchez-Laulhé

Abstract. This paper describes the evolution of a mesoscale convective system (MCS) developed over the Alboran Sea on 7 February 2005, using surface, upper-air stations, radar and satellite observations, and also data from an operational numerical model. The system developed during the night as a small convective storm line in an environment with slight convective instability, low precipitable water and strong low-level vertical wind shear near coast. The linear MCS moved northwards reaching the Spanish coast. Then it remained trapped along the coast for more than twelve hours, following the coast more than five hundred kilometres. The MCS here described had a fundamental orographic character due to: (1) the generation of a low-level storm inflow parallel to the coast, formed by blocking of the onshore flow by coastal mountains and (2) the orientation of both the mesoscale ascent from the sea towards the coastal mountains and the midlevel rear inflow from the coastal mountains to the sea. The main motivation of this work was to obtain a better understanding of the mechanisms relevant to the formation of heavy rainfall episodes occurring at Spanish Mediterranean coast associated with this kind of stationary or slowly moving MCSs.


Author(s):  
Geoffrey R. Marion ◽  
Robert J. Trapp

AbstractAlthough tornadoes produced by quasi-linear convective systems (QLCSs) generally are weak and short-lived, they have high societal impact due to their proclivity to develop over short time scales, within the cool season, and during nighttime hours. Precisely why they are weak and short lived is not well understood, although recent work suggests that QLCS updraft width may act as a limitation to tornado intensity. Herein, idealized simulations of tornadic QLCSs are performed with variations in hodograph shape and length as well as initiation mechanism to determine the controls of tornado intensity. Generally, the addition of hodograph curvature in these experiments results in stronger, longer-lived tornadic like vortices (TLVs). A strong correlation between low-level mesocyclone width and TLV intensity is identified (R2 = 0.61), with a weaker correlation in the low-level updraft intensity (R2 = 0.41). The tilt and depth of the updraft are found to have little correlation to tornado intensity. Comparing QLCS and isolated supercell updrafts within these simulations, the QLCS updrafts are less persistent, with the standard deviations of low-level vertical velocity and updraft helicity to be approximately 48% and 117% greater, respectively. A forcing decomposition reveals that the QLCS cold pool plays a direct role in the development of the low-level updraft, providing the benefit of additional forcing for ascent while also having potentially deleterious effects on both the low-level updraft and near-surface rotation. The negative impact of the cold pool ultimately serves to limit the persistence of rotating updraft cores within the QLCS.


2015 ◽  
Vol 72 (6) ◽  
pp. 2507-2524 ◽  
Author(s):  
Russ S. Schumacher

Abstract Using a method for initiating a quasi-stationary, heavy-rain-producing elevated mesoscale convective system in an idealized numerical modeling framework, a series of experiments is conducted in which a shallow layer of drier air is introduced within the near-surface stable layer. The environment is still very moist in the experiments, with changes to the column-integrated water vapor of only 0.3%–1%. The timing and general evolution of the simulated convective systems are very similar, but rainfall accumulation at the surface is changed by a much larger fraction than the reduction in moisture, with point precipitation maxima reduced by up to 29% and domain-averaged precipitation accumulations reduced by up to 15%. The differences in precipitation are partially attributed to increases in the evaporation rate in the shallow subcloud layer, though this is found to be a secondary effect. More importantly, even though the near-surface layer has strong convective inhibition in all simulations and the convective available potential energy of the most unstable parcels is unchanged, convection is less intense in the experiments with drier subcloud layers because less air originating in that layer rises in convective updrafts. An additional experiment with a cooler near-surface layer corroborates these findings. The results from these experiments suggest that convective systems assumed to be elevated are, in fact, drawing air from near the surface unless the low levels are very stable. Considering that the moisture differences imposed here are comparable to observational uncertainties in low-level temperature and moisture, the strong sensitivity of accumulated precipitation to these quantities has implications for the predictability of extreme rainfall.


2015 ◽  
Vol 72 (11) ◽  
pp. 4319-4336 ◽  
Author(s):  
Mitchell W. Moncrieff ◽  
Todd P. Lane

Abstract Part II of this study of long-lived convective systems in a tropical environment focuses on forward-tilted, downshear-propagating systems that emerge spontaneously from idealized numerical simulations. These systems differ in important ways from the standard mesoscale convective system that is characterized by a rearward-tilted circulation with a trailing stratiform region, an overturning updraft, and a mesoscale downdraft. In contrast to this standard mesoscale system, the downshear-propagating system considered here does not feature a mesoscale downdraft and, although there is a cold pool it is of secondary importance to the propagation and maintenance of the system. The mesoscale downdraft is replaced by hydraulic-jump-like ascent beneath an elevated, forward-tilted overturning updraft with negligible convective available potential energy. Therefore, the mesoscale circulation is sustained almost entirely by the work done by the horizontal pressure gradient and the kinetic energy available from environmental shear. This category of organization is examined by cloud-system-resolving simulations and approximated by a nonlinear archetypal model of the quasi-steady Lagrangian-mean mesoscale circulation.


2012 ◽  
Vol 69 (11) ◽  
pp. 3372-3390 ◽  
Author(s):  
Alexander D. Schenkman ◽  
Ming Xue ◽  
Alan Shapiro

Abstract The Advanced Regional Prediction System (ARPS) is used to simulate a tornadic mesovortex with the aim of understanding the associated tornadogenesis processes. The mesovortex was one of two tornadic mesovortices spawned by a mesoscale convective system (MCS) that traversed southwestern and central Oklahoma on 8–9 May 2007. The simulation used 100-m horizontal grid spacing, and is nested within two outer grids with 400-m and 2-km grid spacing, respectively. Both outer grids assimilate radar, upper-air, and surface observations via 5-min three-dimensional variational data assimilation (3DVAR) cycles. The 100-m grid is initialized from a 40-min forecast on the 400-m grid. Results from the 100-m simulation provide a detailed picture of the development of a mesovortex that produces a submesovortex-scale tornado-like vortex (TLV). Closer examination of the genesis of the TLV suggests that a strong low-level updraft is critical in converging and amplifying vertical vorticity associated with the mesovortex. Vertical cross sections and backward trajectory analyses from this low-level updraft reveal that the updraft is the upward branch of a strong rotor that forms just northwest of the simulated TLV. The horizontal vorticity in this rotor originates in the near-surface inflow and is caused by surface friction. An additional simulation with surface friction turned off does not produce a rotor, strong low-level updraft, or TLV. Comparison with previous two-dimensional numerical studies of rotors in the lee of mountains shows striking similarities to the rotor formation presented herein. The findings of this study are summarized in a four-stage conceptual model for tornadogenesis in this case that describes the evolution of the event from mesovortexgenesis through rotor development and finally TLV genesis and intensification.


2013 ◽  
Vol 70 (3) ◽  
pp. 767-793 ◽  
Author(s):  
Andrew J. Oberthaler ◽  
Paul M. Markowski

Abstract Numerical simulations are used to investigate how the attenuation of solar radiation by the intervening cumulonimbus cloud, particularly its large anvil, affects the structure, intensity, and evolution of quasi-linear convective systems and the sensitivity of the effects of this “anvil shading” to the ambient wind profile. Shading of the pre-gust-front inflow environment (as opposed to shading of the cold pool) has the most important impact on the convective systems. The magnitude of the low-level cooling, associated baroclinicity, and stabilization of the pre-gust-front environment due to anvil shading generally increases as the duration of the shading increases. Thus, for a given leading anvil length, a slow-moving convective system tends to be affected more by anvil shading than does a fast-moving convective system. Differences in the forward speeds of the convective systems simulated in this study are largely attributable to differences in the mean environmental wind speed over the depth of the troposphere. Anvil shading reduces the buoyancy realized by the air parcels that ascend through the updrafts. As a result, anvil shading contributes to weaker updrafts relative to control simulations in which clouds are transparent to solar radiation. Anvil shading also affects the convective systems by modifying the low-level (nominally 0–2.5 km AGL) vertical wind shear in the pre-gust-front environment. The shear modifications affect the slope of the updraft region and system-relative rear-to-front flow, and the sign of the modifications is sensitive to the ground-relative vertical wind profile in the far-field environment. The vertical wind shear changes are brought about by baroclinic vorticity generation associated with the horizontal buoyancy gradient that develops in the shaded boundary layer (which makes the pre-gust-front, low-level vertical wind shear less westerly) and by a reduction of the vertical mixing of momentum due to the near-surface (nominally 0–300 m AGL) stabilization that accompanies the shading-induced cooling. The reduced mixing makes the pre-gust-front, low-level vertical shear more (less) westerly if the ambient, near-surface wind and wind shear are westerly (easterly).


Sign in / Sign up

Export Citation Format

Share Document