scholarly journals An Anomalous Genesis Potential Index for MJO Modulation of Tropical Cyclones

2017 ◽  
Vol 30 (11) ◽  
pp. 4021-4035 ◽  
Author(s):  
Bin Wang ◽  
Ja-Yeon Moon

Abstract Modulation of tropical cyclone (TC) genesis by the Madden–Julian oscillation (MJO) has been quantitatively diagnosed by using a climatological genesis potential index (GPI). Analysis of TC genesis during November–April of 1979–2014 indicates the most effective factors controlling intraseasonal TC genesis are 850-hPa relative vorticity weighted by the Coriolis parameter fζr850 and 500-hPa vertical motion ω500. The total vertical wind shear and maximum potential intensity are unimportant, and the role of 600-hPa relative humidity is greatly represented by ω500. The MJO modulates TC genesis primarily through changing low-level vorticity induced by its Rossby wave gyres and meridional shears of equatorial zonal winds. A new intraseasonal GPI (ISGPI) is proposed to quantify the MJO’s modulation of TC genesis. The ISGPI significantly improves representation of intraseasonal variation of TC genesis in the tropics and in each subregion of the southern Indian Ocean, Australian monsoon, and South Pacific. In the hot spots of the Southern Hemisphere TC genesis zone, the probability of TC genesis can differ by a factor of 5–19 as a result of MJO modulation. The results suggest that the large-scale factors controlling TC genesis may vary with different time scales, and the climatological GPI may not be quite applicable for diagnoses of climate variability and future change of TC genesis potential. To simulate realistic impacts of the MJO on TC genesis, general circulation models must reproduce not only realistic eastward propagation but also the MJO low-level circulation structure. Application of the new ISGPI may have a large potential to improve dynamical subseasonal prediction of TC genesis.

2018 ◽  
Vol 31 (22) ◽  
pp. 9055-9071 ◽  
Author(s):  
Ja-Yeon Moon ◽  
Bin Wang ◽  
Sun-Seon Lee ◽  
Kyung-Ja Ha

Abstract An intraseasonal genesis potential index (ISGPI) for Northern Hemisphere (NH) summer is proposed to quantify the anomalous tropical cyclone genesis (TCG) frequency induced by boreal summer intraseasonal oscillation (BSISO). The most important factor controlling NH summer TCG is found as 500-hPa vertical motion (ω500) caused by the prominent northward shift of large-scale circulation anomalies during BSISO evolution. The ω500 with two secondary factors (850-hPa relative vorticity weighted by the Coriolis parameter and vertical shear of zonal winds) played an effective role globally and for each individual basin in the northern oceans. The relative contributions of these factors to TCG have minor differences by basins except for the western North Atlantic (NAT), where low-level vorticity becomes the most significant contributor. In the eastern NAT, the BSISO has little control of TCG because weak convective BSISO and dominant 10–30-day circulation signal did not match the overall BSISO life cycle. The ISGPI is shown to reproduce realistic intraseasonal variability of TCG, but the performance is phase-dependent. The ISGPI shows the highest fidelity when BSISO convective anomalies have the largest amplitude in the western North Pacific and the lowest when they are located over the north Indian Ocean and eastern North Pacific. Along the NH major TCG zone, the TCG probability changes from a dry to a wet phase by a large factor ranging from 3 to 12 depending on the basins. The new ISGPI for NH summer can simulate more realistic impact of BSISO on TC genesis compared to canonical GPI derived by climatology.


2021 ◽  
Vol 149 (10) ◽  
pp. 3469-3490
Author(s):  
Zhixiao Zhang ◽  
Adam Varble ◽  
Zhe Feng ◽  
Joseph Hardin ◽  
Edward Zipser

AbstractA 6.5-month, convection-permitting simulation is conducted over Argentina covering the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) field campaign and is compared with observations to evaluate mesoscale convective system (MCS) growth prediction. Observed and simulated MCSs are consistently identified, tracked, and separated into growth, mature, and decay stages using top-of-the-atmosphere infrared brightness temperature and surface rainfall. Simulated MCS number, lifetime, seasonal and diurnal cycles, and various cloud-shield characteristics including growth rate are similar to those observed. However, the simulation produces smaller rainfall areas, greater proportions of heavy rainfall, and faster system propagations. Rainfall area is significantly underestimated for long-lived MCSs but not for shorter-lived MCSs, and rain rates are always overestimated. These differences result from a combination of model and satellite retrieval biases, in which simulated MCS rain rates are shifted from light to heavy, while satellite-retrieved rainfall is too frequent relative to rain gauge estimates. However, the simulation reproduces satellite-retrieved MCS cloud-shield evolution well, supporting its usage to examine environmental controls on MCS growth. MCS initiation locations are associated with removal of convective inhibition more than maximized low-level moisture convergence or instability. Rapid growth is associated with a stronger upper-level jet (ULJ) and a deeper northwestern Argentinean low that causes a stronger northerly low-level jet (LLJ), increasing heat and moisture fluxes, low-level vertical wind shear, baroclinicity, and instability. Sustained growth corresponds to similar LLJ, baroclinicity, and instability conditions but is less sensitive to the ULJ, large-scale vertical motion, or low-level shear. Growth sustenance controls MCS maximum extent more than growth rate.


2008 ◽  
Vol 21 (8) ◽  
pp. 1758-1770 ◽  
Author(s):  
Catherine M. Naud ◽  
Anthony Del Genio ◽  
Gerald G. Mace ◽  
Sally Benson ◽  
Eugene E. Clothiaux ◽  
...  

Abstract The observation and representation in general circulation models (GCMs) of cloud vertical overlap are the objects of active research due to their impacts on the earth’s radiative budget. Previous studies have found that vertically contiguous cloudy layers show a maximum overlap between layers up to several kilometers apart but tend toward a random overlap as separations increase. The decorrelation length scale that characterizes the progressive transition from maximum to random overlap changes from one location and season to another and thus may be influenced by large-scale vertical motion, wind shear, or convection. Observations from the U.S. Department of Energy Atmospheric Radiation Measurement program ground-based radars and lidars in midlatitude and tropical locations in combination with reanalysis meteorological fields are used to evaluate how dynamics and atmospheric state influence cloud overlap. For midlatitude winter months, strong synoptic-scale upward motion maintains conditions closer to maximum overlap at large separations. In the tropics, overlap becomes closer to maximum as convective stability decreases. In midlatitude subsidence and tropical convectively stable situations, where a smooth transition from maximum to random overlap is found on average, large wind shears sometimes favor minimum overlap. Precipitation periods are discarded from the analysis but, when included, maximum overlap occurs more often at large separations. The results suggest that a straightforward modification of the existing GCM mixed maximum–random overlap parameterization approach that accounts for environmental conditions can capture much of the important variability and is more realistic than approaches that are only based on an exponential decay transition from maximum to random overlap.


2013 ◽  
Vol 141 (3) ◽  
pp. 1099-1117 ◽  
Author(s):  
Andrew Charles ◽  
Bertrand Timbal ◽  
Elodie Fernandez ◽  
Harry Hendon

Abstract Seasonal predictions based on coupled atmosphere–ocean general circulation models (GCMs) provide useful predictions of large-scale circulation but lack the conditioning on topography required for locally relevant prediction. In this study a statistical downscaling model based on meteorological analogs was applied to continental-scale GCM-based seasonal forecasts and high quality historical site observations to generate a set of downscaled precipitation hindcasts at 160 sites in the South Murray Darling Basin region of Australia. Large-scale fields from the Predictive Ocean–Atmosphere Model for Australia (POAMA) 1.5b GCM-based seasonal prediction system are used for analog selection. Correlation analysis indicates modest levels of predictability in the target region for the selected predictor fields. A single best-match analog was found using model sea level pressure, meridional wind, and rainfall fields, with the procedure applied to 3-month-long reforecasts, initialized on the first day of each month from 1980 to 2006, for each model day of 10 ensemble members. Assessment of the total accumulated rainfall and number of rainy days in the 3-month reforecasts shows that the downscaling procedure corrects the local climate variability with no mean effect on predictive skill, resulting in a smaller magnitude error. The amount of total rainfall and number of rain days in the downscaled output is significantly improved over the direct GCM output as measured by the difference in median and tercile thresholds between station observations and downscaled rainfall. Confidence in the downscaled output is enhanced by strong consistency between the large-scale mean of the downscaled and direct GCM precipitation.


2015 ◽  
Vol 72 (1) ◽  
pp. 55-74 ◽  
Author(s):  
Qiang Deng ◽  
Boualem Khouider ◽  
Andrew J. Majda

Abstract The representation of the Madden–Julian oscillation (MJO) is still a challenge for numerical weather prediction and general circulation models (GCMs) because of the inadequate treatment of convection and the associated interactions across scales by the underlying cumulus parameterizations. One new promising direction is the use of the stochastic multicloud model (SMCM) that has been designed specifically to capture the missing variability due to unresolved processes of convection and their impact on the large-scale flow. The SMCM specifically models the area fractions of the three cloud types (congestus, deep, and stratiform) that characterize organized convective systems on all scales. The SMCM captures the stochastic behavior of these three cloud types via a judiciously constructed Markov birth–death process using a particle interacting lattice model. The SMCM has been successfully applied for convectively coupled waves in a simplified primitive equation model and validated against radar data of tropical precipitation. In this work, the authors use for the first time the SMCM in a GCM. The authors build on previous work of coupling the High-Order Methods Modeling Environment (HOMME) NCAR GCM to a simple multicloud model. The authors tested the new SMCM-HOMME model in the parameter regime considered previously and found that the stochastic model drastically improves the results of the deterministic model. Clear MJO-like structures with many realistic features from nature are reproduced by SMCM-HOMME in the physically relevant parameter regime including wave trains of MJOs that organize intermittently in time. Also one of the caveats of the deterministic simulation of requiring a doubling of the moisture background is not required anymore.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Tao Chen ◽  
Da-Lin Zhang

In view of the limited predictability of heavy rainfall (HR) events and the limited understanding of the physical mechanisms governing the initiation and organization of the associated mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e., far ahead of the surface cold front), referred to as WSHR events, over South China during the months of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm environments are characterized by a deep moist layer with >50 mm column-integrated precipitable water, high convective available potential energy with the equivalent potential temperature of ≥340 K at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs, exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped, respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic lifting in the southwesterly warm and moist flows. They all develop in large-scale environments with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to facilitate our understanding and prediction of the WSHR events over South China.


2007 ◽  
Vol 64 (11) ◽  
pp. 3766-3784 ◽  
Author(s):  
Philippe Lopez

Abstract This paper first reviews the current status, issues, and limitations of the parameterizations of atmospheric large-scale and convective moist processes that are used in numerical weather prediction and climate general circulation models. Both large-scale (resolved) and convective (subgrid scale) moist processes are dealt with. Then, the general question of the inclusion of diabatic processes in variational data assimilation systems is addressed. The focus is put on linearity and resolution issues, the specification of model and observation error statistics, the formulation of the control vector, and the problems specific to the assimilation of observations directly affected by clouds and precipitation.


2006 ◽  
Vol 24 (8) ◽  
pp. 2075-2089 ◽  
Author(s):  
A. Chakraborty ◽  
R. S. Nanjundiah ◽  
J. Srinivasan

Abstract. A theory is proposed to determine the onset of the Indian Summer Monsoon (ISM) in an Atmospheric General Circulation Model (AGCM). The onset of ISM is delayed substantially in the absence of global orography. The impact of orography over different parts of the Earth on the onset of ISM has also been investigated using five additional perturbed simulations. The large difference in the date of onset of ISM in these simulations has been explained by a new theory based on the Surface Moist Static Energy (SMSE) and vertical velocity at the mid-troposphere. It is found that onset occurs only after SMSE crosses a threshold value and the large-scale vertical motion in the middle troposphere becomes upward. This study shows that both dynamics and thermodynamics play profound roles in the onset of the monsoon.


2020 ◽  
Vol 50 (4) ◽  
pp. 1045-1064 ◽  
Author(s):  
Steven L. Morey ◽  
Ganesh Gopalakrishnan ◽  
Enric Pallás Sanz ◽  
Joao Marcos Azevedo Correia De Souza ◽  
Kathleen Donohue ◽  
...  

AbstractThree simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (>1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.


2019 ◽  
Vol 12 (11) ◽  
pp. 4823-4873 ◽  
Author(s):  
Neil C. Swart ◽  
Jason N. S. Cole ◽  
Viatcheslav V. Kharin ◽  
Mike Lazare ◽  
John F. Scinocca ◽  
...  

Abstract. The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and their coupling, as well as various aspects of model development, including tuning, optimization, and a reproducibility strategy. We also document the stability of the model using a long control simulation, quantify the model's ability to reproduce large-scale features of the historical climate, and evaluate the response of the model to external forcing. CanESM5 is comprised of three-dimensional atmosphere (T63 spectral resolution equivalent roughly to 2.8∘) and ocean (nominally 1∘) general circulation models, a sea-ice model, a land surface scheme, and explicit land and ocean carbon cycle models. The model features relatively coarse resolution and high throughput, which facilitates the production of large ensembles. CanESM5 has a notably higher equilibrium climate sensitivity (5.6 K) than its predecessor, CanESM2 (3.7 K), which we briefly discuss, along with simulated changes over the historical period. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science and service applications in Canada.


Sign in / Sign up

Export Citation Format

Share Document