Improving the Four-Dimensional Incremental Analysis Update (4DIAU) with the HWRF 4DEnVar Data Assimilation System for Rapidly Evolving Hurricane Prediction

Author(s):  
Xu Lu ◽  
Xuguang Wang

AbstractShort-term spin-up for strong storms is a known difficulty for the operational Hurricane Weather Research and Forecasting (HWRF) model after assimilating high-resolution inner-core observations. Our previous study associated this short-term intensity prediction issue with the incompatibility between the HWRF model and the data assimilation (DA) analysis. While improving physics and resolution of the model was found helpful, this study focuses on further improving the intensity predictions through the four-dimensional incremental analysis update (4DIAU).In the traditional 4DIAU, increments are pre-determined by subtracting background forecasts from analyses. Such pre-determined increments implicitly require linear evolution assumption during the update, which are hardly valid for rapid-evolving hurricanes. To confirm the hypothesis, a corresponding 4D analysis nudging (4DAN) method which uses online increments is first compared with the 4DIAU in an oscillation model. Then, variants of 4DIAU are proposed to improve its application for nonlinear systems. Next, 4DIAU, 4DAN and their proposed improvements are implemented into the HWRF 4DEnVar DA system and are investigated with hurricane Patricia (2015).Results from both oscillation model and HWRF model show that: 1. the pre-determined increments in 4DIAU can be detrimental when there are discrepancies between the updated and background forecasts during a nonlinear evolution. 2. 4DAN can improve the performance of incremental update upon 4DIAU, but its improvements are limited by the over-filtering. 3. Relocating initial background before the incremental update can improve the corresponding traditional methods. 4. the feature-relative 4DIAU method improves the incremental update the most and produces the best track and intensity predictions for Patricia among all experiments.

2013 ◽  
Vol 141 (9) ◽  
pp. 2992-3006 ◽  
Author(s):  
Tomislava Vukicevic ◽  
Altuğ Aksoy ◽  
Paul Reasor ◽  
Sim D. Aberson ◽  
Kathryn J. Sellwood ◽  
...  

Abstract In this study the properties and causes of systematic errors in high-resolution data assimilation of inner-core tropical cyclone (TC) observations were investigated using the Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS). Although a recent study by Aksoy et al. demonstrated overall good performance of HEDAS for 83 cases from 2008 to 2011 using airborne observations from research and operational aircraft, some systematic errors were identified in the analyses with respect to independent observation-based estimates. The axisymmetric primary circulation intensity was underestimated for hurricane cases and the secondary circulation was systematically weaker for all cases. The diagnostic analysis in this study shows that the underestimate of primary circulation was caused by the systematic spindown of the vortex core in the short-term forecasts during the cycling with observations. This tendency bias was associated with the systematic errors in the secondary circulation, temperature, and humidity. The biases were reoccurring in each cycle during the assimilation because of the inconsistency between the strength of primary and secondary circulation during the short-term forecasts, the impact of model error in planetary boundary layer dynamics, and the effect of forecast tendency bias on the background error correlations. Although limited to the current analysis the findings in this study point to a generic problem of mutual dependence of short-term forecast tendency and state estimate errors in the data assimilation of TC core observations. The results indicate that such coupling of errors in the assimilation would also lead to short-term intensity forecast bias after the assimilation for the same reasons.


Author(s):  
Jie Feng ◽  
Xuguang Wang

AbstractAlthough numerous studies have demonstrated that increasing model spatial resolution in free forecasts can potentially improve tropical cyclone (TC) intensity forecasts, studies on the impact of model resolution during data assimilation (DA) on TC prediction are lacking. In this study, using the ensemble-variational DA system for Hurricane Weather Research and Forecasting (HWRF) model, we investigated the individual impact of increasing the model resolution of first guess (FG) and background ensemble (BE) forecasts during DA on initial analyses and subsequent forecasts of Hurricane Patricia (2015). The impacts were compared between horizontal and vertical resolutions and also between the tropical storm (TS) and hurricane assimilation during Patricia.The results show that increasing the horizontal or vertical resolution in FG has a larger impact than increasing the resolution in BE on improving the analyzed TC intensity and structure for the hurricane stage. The result is reversed for the TS stage. These results are attributed to the effectiveness of increasing the FG resolution in intensifying the background vortex for the hurricane stage relative to the TS stage. Increasing the BE resolution contributes to improving the analyzed intensity through the better-resolved background correlation structure for both the hurricane and TS stages. Increasing horizontal resolution has an overall larger effect than increasing vertical resolution in improving the analysis at the hurricane stage and their effects are close for the analysis at the TS stage. Additionally, the more accurately analyzed primary, secondary circulation, and warm core structures via the increased resolution in DA lead to improved TC intensity forecasts.


2015 ◽  
Vol 144 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Steven E. Peckham ◽  
Tatiana G. Smirnova ◽  
Stanley G. Benjamin ◽  
John M. Brown ◽  
Jaymes S. Kenyon

Abstract Because of limitations of variational and ensemble data assimilation schemes, resulting analysis fields exhibit some noise from imbalance in subsequent model forecasts. Controlling finescale noise is desirable in the NOAA’s Rapid Refresh (RAP) assimilation/forecast system, which uses an hourly data assimilation cycle. Hence, a digital filter initialization (DFI) capability has been introduced into the Weather Research and Forecasting Model and applied operationally in the RAP, for which hourly intermittent assimilation makes DFI essential. A brief overview of the DFI approach, its implementation, and some of its advantages are discussed. Results from a 1-week impact test with and without DFI demonstrate that DFI is effective at reducing high-frequency noise in short-term operational forecasts as well as providing evidence of reduced errors in the 1-h mass and momentum fields. However, DFI is also shown to reduce the strength of parameterized deep moist convection during the first hour of the forecast.


2021 ◽  
Author(s):  
Jie Feng

<p>Although numerous studies have demonstrated that increasing model spatial resolution in free forecasts can potentially improve tropical cyclone (TC) intensity forecasts, studies on the impact of model resolution during data assimilation (DA) on TC prediction are lacking.  In this study, using the ensemble-variational DA system for Hurricane Weather Research and Forecasting (HWRF) model, we investigated the individual impact of increasing the model resolution of first guess (FG) and background ensemble (BE) forecasts during DA on initial analyses and subsequent forecasts of Hurricane Patricia (2015).  The impacts were compared between horizontal and vertical resolutions and also between the tropical storm (TS) and hurricane assimilation during Patricia.</p><p>The results show that increasing the horizontal or vertical resolution in FG has a larger impact than increasing the resolution in BE on improving the analyzed TC intensity and structure for the hurricane stage. The result is reversed for the TS stage.  These results are attributed to the effectiveness of increasing the FG resolution in intensifying the background vortex for the hurricane stage relative to the TS stage.  Increasing the BE resolution contributes to improving the analyzed intensity through the better-resolved background correlation structure for both the hurricane and TS stages.  Increasing horizontal resolution has an overall larger effect than increasing vertical resolution in improving the analysis at the hurricane stage and their effects are close for the analysis at the TS stage. Additionally, the more accurately analyzed primary, secondary circulation, and warm core structures via the increased resolution in DA lead to improved TC intensity forecasts.</p>


2018 ◽  
Vol 33 (1) ◽  
pp. 239-266 ◽  
Author(s):  
Daniel J. Halperin ◽  
Ryan D. Torn

Abstract Understanding and forecasting tropical cyclone (TC) intensity change continues to be a paramount challenge for the research and operational communities, partly because of inherent systematic biases contained in model guidance, which can be difficult to diagnose. The purpose of this paper is to present a method to identify such systematic biases by comparing forecasts characterized by large intensity errors with analog forecasts that exhibit small intensity errors. The methodology is applied to the 2015 version of the Hurricane Weather Research and Forecasting (HWRF) Model retrospective forecasts in the North Atlantic (NATL) and eastern North Pacific (EPAC) basins during 2011–14. Forecasts with large 24-h intensity errors are defined to be in the top 15% of all cases in the distribution that underforecast intensity. These forecasts are compared to analog forecasts taken from the bottom 50% of the error distribution. Analog forecasts are identified by finding the case that has 0–24-h intensity and wind shear magnitude time series that are similar to the large intensity error forecasts. Composite differences of the large and small intensity error forecasts reveal that the EPAC large error forecasts have weaker reflectivity and vertical motion near the TC inner core from 3 h onward. Results over the NATL are less clear, with the significant differences between the large and small error forecasts occurring radially outward from the TC core. Though applied to TCs, this analog methodology could be useful for diagnosing systematic model biases in other applications.


2013 ◽  
Vol 141 (6) ◽  
pp. 1842-1865 ◽  
Author(s):  
Altuğ Aksoy ◽  
Sim D. Aberson ◽  
Tomislava Vukicevic ◽  
Kathryn J. Sellwood ◽  
Sylvie Lorsolo ◽  
...  

Abstract The Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS) is developed to assimilate tropical cyclone inner-core observations for high-resolution vortex initialization. It is based on a serial implementation of the square root ensemble Kalman filter (EnKF). In this study, HWRF is used in an experimental configuration with horizontal grid spacing of 9 (3) km on the outer (inner) domain. HEDAS is applied to 83 cases from years 2008 to 2011. With the exception of two Hurricane Hilary (2011) cases in the eastern North Pacific basin, all cases are observed in the Atlantic basin. Observed storm intensity for these cases ranges from tropical depression to category-4 hurricane. Overall, it is found that high-resolution tropical cyclone observations, when assimilated with an advanced data assimilation technique such as the EnKF, result in analyses of the primary circulation that are realistic in terms of intensity, wavenumber-0 radial structure, as well as wavenumber-1 azimuthal structure. Representing the secondary circulation in the analyses is found to be more challenging with systematic errors in the magnitude and depth of the low-level radial inflow. This is believed to result from a model bias in the experimental HWRF caused by the overdiffusive nature of the planetary boundary layer parameterization utilized. Thermodynamic deviations from the observed structure are believed to be caused by both an imbalance between the number of the kinematic and thermodynamic observations in general and the suboptimal ensemble covariances between kinematic and thermodynamic fields. Future plans are discussed to address these challenges.


2019 ◽  
Vol 12 (9) ◽  
pp. 3939-3954
Author(s):  
Frederik Kurzrock ◽  
Hannah Nguyen ◽  
Jerome Sauer ◽  
Fabrice Chane Ming ◽  
Sylvain Cros ◽  
...  

Abstract. Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in midlatitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days are still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure and on the impact of this method on short-term forecasts of GHI for Réunion Island, a tropical island in the southwest Indian Ocean. The multilayer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) Manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated, and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and middle troposphere. Ground-based GHI observations at 12 sites on Réunion Island are used to quantify the impact of CWP DA. Over a total of 44 d during austral summertime, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 h. Root mean square error and mean absolute error are reduced by 4 % and 3 %, respectively.


2014 ◽  
Vol 31 (9) ◽  
pp. 2008-2014 ◽  
Author(s):  
Xin Zhang ◽  
Ying-Hwa Kuo ◽  
Shu-Ya Chen ◽  
Xiang-Yu Huang ◽  
Ling-Feng Hsiao

Abstract The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.


2013 ◽  
Vol 6 (2) ◽  
pp. 3581-3610
Author(s):  
S. Federico

Abstract. This paper presents the current status of development of a three-dimensional variational data assimilation system. The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost-function, and the use of an analysis space represented by recursive filters and eigenmodes of the vertical background error matrix. This matrix and the length-scale of the recursive filters are estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analysis solutions because they are closer to the observations (lower RMSE) compared to the background (higher RMSE), and the differences of the RMSEs are consistent with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of a three-hours forecast of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3-D-Var scheme as initial conditions, then is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind, which are measured at a-synoptic times by the European wind profiler network. The results show that the RMSE is effectively reduced at the short range (1–2 h). The results are in agreement with the set-up of the numerical experiment.


2018 ◽  
Author(s):  
Qiang Cheng ◽  
Juanjuan Liu ◽  
Bin Wang

Abstract. This work focused on a new strategy for productively improving the performance of adjoint models. By using several techniques including the push/pop-free method, careful Input/Output (IO) analysis and the use of the conception of adjoint locality, we reduced the adjoint cost of the Weather Research and Forecasting plus (WRFPLUS) by almost half on different numbers of processors especially with a slight decrease in total memory. Several experiments are conducted using the four-dimensional variational data assimilation (4DVar) method. The results show that the total time cost of running a 4DVar application is decreased by approximately 1/3.


Sign in / Sign up

Export Citation Format

Share Document