scholarly journals Using Frontogenesis to Identify Sting Jets in Extratropical Cyclones

2013 ◽  
Vol 28 (3) ◽  
pp. 603-613 ◽  
Author(s):  
David M. Schultz ◽  
Joseph M. Sienkiewicz

AbstractSting jets, or surface wind maxima at the end of bent-back fronts in Shapiro–Keyser cyclones, are one cause of strong winds in extratropical cyclones. Although previous studies identified the release of conditional symmetric instability as a cause of sting jets, the mechanism to initiate its release remains unidentified. To identify this mechanism, a case study was selected of an intense cyclone over the North Atlantic Ocean during 7–8 December 2005 that possessed a sting jet detected from the NASA Quick Scatterometer (QuikSCAT). A couplet of Petterssen frontogenesis and frontolysis occurred along the bent-back front. The direct circulation associated with the frontogenesis led to ascent within the cyclonically turning portion of the warm conveyor belt, contributing to the comma-cloud head. When the bent-back front became frontolytic, an indirect circulation associated with the frontolysis, in conjunction with alongfront cold advection, led to descent within and on the warm side of the front, bringing higher-momentum air down toward the boundary layer. Sensible heat fluxes from the ocean surface and cold-air advection destabilized the boundary layer, resulting in near-neutral static stability facilitating downward mixing. Thus, descent associated with the frontolysis reaching a near-neutral boundary layer provides a physical mechanism for sting jets, is consistent with previous studies, and synthesizes existing knowledge. Specifically, this couplet of frontogenesis and frontolysis could explain why sting jets occur at the end of the bent-back front and emerge from the cloud head, why sting jets are mesoscale phenomena, and why they only occur within Shapiro–Keyser cyclones. A larger dataset of cases is necessary to test this hypothesis.

2019 ◽  
Vol 147 (10) ◽  
pp. 3649-3671 ◽  
Author(s):  
Mihaela Brâncuş ◽  
David M. Schultz ◽  
Bogdan Antonescu ◽  
Christopher Dearden ◽  
Sabina Ştefan

Abstract During 2–3 December 2012, the Black Sea and east coast of Romania were affected by a rapidly deepening Mediterranean cyclone. The cyclone developed a bent-back front along which short-lived (2–4 h) strong winds up to 38 m s−1 were recorded equatorward of the cyclone center. A mesoscale model simulation was used to analyze the evolution of the wind field, to investigate the physical processes that were responsible for the strong winds and their acceleration, and to investigate the relative importance of the stability of the boundary layer to those strong winds. The origin of the air in the wind maximum equatorward of the cyclone center was twofold. The first was associated with a sting jet, a descending airstream from the midlevels of the cloud head and the lower part of the cyclonic branch of the warm conveyor belt. The sting jet started to descend west of the cyclone center, ending at the frontolytic tip of the bent-back front. The second was a low-level airstream associated with the cold conveyor belt that originated northeast of the cyclone center and traveled below 900 hPa along the cold side of the bent-back front, ending behind the cold front. Both airstreams were accelerated by the along-flow pressure gradient force, with the largest accelerations acting on the sting-jet air before entering into the near-surface strong-wind area. The sensible heat fluxes destabilized the boundary layer to near-neutral conditions south of the cyclone center, facilitating downward mixing and allowing the descending air to reach the surface. Mesoscale instabilities appeared to be unimportant in the sting-jet formation.


2007 ◽  
Vol 64 (12) ◽  
pp. 4383-4399 ◽  
Author(s):  
R. S. Plant ◽  
S. E. Belcher

Abstract A dry three-dimensional baroclinic life cycle model is used to investigate the role of turbulent fluxes of heat and momentum within the boundary layer on midlatitude cyclones. Simulations are performed of life cycles for two basic states: with and without turbulent fluxes. The different basic states produce cyclones with contrasting frontal and mesoscale flow structures. The analysis focuses on the generation of potential vorticity (PV) in the boundary layer and its subsequent transport into the free troposphere. The dynamic mechanism through which friction mitigates a barotropic vortex is that of Ekman pumping. This has often been assumed to also be the dominant mechanism for baroclinic developments. The PV framework highlights an additional, baroclinic mechanism. Positive PV is generated baroclinically due to friction to the northeast of a surface low and is transported out of the boundary layer by a cyclonic conveyor belt flow. The result is an anomaly of increased static stability in the lower troposphere, which restricts the growth of the baroclinic wave. The reduced coupling between lower and upper levels can be sufficient to change the character of the upper-level evolution of the mature wave. The basic features of the baroclinic damping mechanism are robust for different frontal structures, with and without turbulent heat fluxes, and for the range of surface roughness found over the oceans.


2014 ◽  
Vol 142 (8) ◽  
pp. 2596-2608 ◽  
Author(s):  
Giuseppe Zappa ◽  
Len Shaffrey ◽  
Kevin Hodges

Abstract Polar lows are maritime mesocyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the Interim ECMWF Re-Analysis (ERA-Interim, hereafter ERAI) to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008–11. First, the representation of a set of satellite-observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analyzed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850-hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite-observed polar lows with a lifetime of at least 6 h have an 850-hPa vorticity signature of a collocated mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite-observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implication of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.


2021 ◽  
Vol 60 (4) ◽  
pp. 527-541
Author(s):  
Juan A. Crespo ◽  
Catherine M. Naud ◽  
Derek J. Posselt

AbstractLatent and sensible heat fluxes over the oceans are believed to play an important role in the genesis and evolution of marine-based extratropical cyclones (ETCs) and affect rapid cyclogenesis. Observations of ocean surface heat fluxes are limited from existing in situ and remote sensing platforms, which may not offer sufficient spatial and temporal resolution. In addition, substantial precipitation frequently veils the ocean surface around ETCs, limiting the capacity of spaceborne instruments to observe the surface processes within maturing ETCs. Although designed as a tropics-focused mission, the Cyclone Global Navigation Satellite System (CYGNSS) can observe ocean surface wind speed and heat fluxes within a notable quantity of low-latitude extratropical fronts and cyclones. These observations can assist in understanding how surface processes may play a role in cyclogenesis and evolution. This paper illustrates CYGNSS’s capability to observe extratropical cyclones manifesting in various ocean basins throughout the globe and shows that the observations provide a robust sample of ETCs winds and surface fluxes, as compared with a reanalysis dataset.


2019 ◽  
Vol 34 (6) ◽  
pp. 2045-2065 ◽  
Author(s):  
Jeffrey D. Kelley ◽  
David M. Schultz ◽  
Russ S. Schumacher ◽  
Dale R. Durran

Abstract On 25 December 2016, a 984-hPa cyclone departed Colorado and moved onto the northern plains, drawing a nearby Arctic front into the circulation and wrapping it cyclonically around the equatorward side of the cyclone. A 130-km-wide and 850-km-long swath of surface winds exceeding 25 m s−1 originated underneath the comma head of the lee cyclone and followed the track of the Arctic front from Colorado to Minnesota. These strong winds formed in association with a downslope windstorm and mountain wave over Colorado and Wyoming, producing an elevated jet of strong winds. Central to the distribution of winds in this case is the Arctic air mass, which both shielded the elevated winds from surface friction behind the front and facilitated the mixing of the elevated jet down to the surface just behind the Arctic front, due to steep lapse rates associated with cold-air advection. The intense circulation south of the cyclone center transported the Arctic front and the elevated jet away from the mountains and out across Great Plains. This case is compared to an otherwise similar cyclone that occurred on 28–29 February 2012 in which a downslope windstorm occurred, but no surface mesoscale wind maximum formed due to the absence of a well-defined Arctic front and postfrontal stable layer. Despite the superficial similarities of this surface wind maximum to a sting jet (e.g., origin in the midtroposphere within the comma head of the cyclone, descent evaporating the comma head, acceleration to the top of the boundary layer, and an existence separate from the cold conveyor belt), this swath of winds was not caused by a sting jet.


2019 ◽  
Vol 53 (11) ◽  
pp. 6785-6814 ◽  
Author(s):  
P. K. Pradhan ◽  
Margarida L. R. Liberato ◽  
Vinay Kumar ◽  
S. Vijaya Bhaskara Rao ◽  
Juan Ferreira ◽  
...  

2015 ◽  
Vol 54 (3) ◽  
pp. 643-657 ◽  
Author(s):  
Jonny W. Malloy ◽  
Daniel S. Krahenbuhl ◽  
Chad E. Bush ◽  
Robert C. Balling ◽  
Michael M. Santoro ◽  
...  

AbstractThis study explores long-term deviations from wind averages, specifically near the surface across central North America and adjoining oceans (25°–50°N, 60°–130°W) for 1979–2012 (408 months) by utilizing the North American Regional Reanalysis 10-m wind climate datasets. Regions where periods of anomalous wind speeds were observed (i.e., 1 standard deviation below/above both the long-term mean annual and mean monthly wind speeds at each grid point) were identified. These two climatic extremes were classified as wind lulls (WLs; below) or wind blows (WBs; above). Major findings for the North American study domain indicate that 1) mean annual wind speeds range from 1–3 m s−1 (Intermountain West) to over 7 m s−1 (offshore the East and West Coasts), 2) mean durations for WLs and WBs are high for much of the southeastern United States and for the open waters of the North Atlantic Ocean, respectively, 3) the longest WL/WB episodes for the majority of locations have historically not exceeded 5 months, 4) WLs and WBs are most common during June and October, respectively, for the upper Midwest, 5) WLs are least frequent over the southwestern United States during the North American monsoon, and 6) no significant anomalous wind trends exist over land or sea.


2019 ◽  
Vol 76 (4) ◽  
pp. 1039-1053
Author(s):  
J. M. Edwards

Abstract The effect of frictional dissipative heating on the calculation of surface fluxes in the atmospheric boundary layer using bulk flux formulas is considered. Although the importance of frictional dissipation in intense storms has been widely recognized, it is suggested here that its impact is also to be seen at more moderate wind speeds in apparently enhanced heat transfer coefficients and countergradient fluxes in nearly neutral conditions. A simple modification to the bulk flux formula can be made to account for its impact within the surface layer. This modification is consistent with an interpretation of the surface layer as one across which the flux of total energy is constant. The effect of this modification on tropical cyclones is assessed in an idealized model, where it is shown to reduce the predicted maximum wind speed by about 4%. In numerical simulations of three individual storms, the impacts are more subtle but indicate a reduction of the sensible heat flux into the storm and a cooling of the surface layer.


2007 ◽  
Vol 20 (2) ◽  
pp. 233-254 ◽  
Author(s):  
Paul R. Field ◽  
Robert Wood

Abstract Composite mean fields and probability distribution functions (PDFs) of rain rate, cloud type and cover, cloud-top temperature, surface wind velocity, and water vapor path (WVP) are constructed using satellite observations of midlatitude cyclones from four oceanic regions (i.e., the North Pacific, South Pacific, North Atlantic, and South Atlantic). Reanalysis surface pressure fields are used to ascertain the locations of the cyclone centers, onto which the satellite fields are interpolated to give a database of ∼1500 cyclones from a two-year period (2003–04). Cyclones are categorized by their strength, defined here using surface wind speed, and by their WVP, and it is found that these two measures can explain a considerable amount of the intercyclone variability of other key variables. Composite cyclones from each of the four ocean basins exhibit similar spatial structure for a given strength and WVP. A set of nine composites is constructed from the database using three strength and three WVP ranges and is used to demonstrate that the mean column relative humidity of these systems varies only slightly (0.58–0.62) for a doubling in WVP (or equivalently a 7-K rise in sea surface temperature) and a 50% increase in cyclone strength. However, cyclone-mean rain rate increases markedly with both cyclone strength and WVP, behavior that is explained with a simple warm conveyor belt model. Systemwide high cloud fraction (tops above 440 hPa) increases from 0.23 to 0.31 as cyclone strength increases by 50%, but does not vary systematically with WVP. It is suggested that the composite fields constitute useful diagnostics for evaluating the behavior of large-scale numerical models, and may provide insight into how precipitation and clouds in midlatitude cyclones respond under a changed climate.


2021 ◽  
Author(s):  
Tong Lee ◽  
Chelle Centemann ◽  
Carol Anne Clayson ◽  
Mark Bourassa ◽  
Shannon Brown ◽  
...  

<p>Air-sea turbulent heat fluxes and their spatial gradients are important to the ocean, climate, weather, and their interactions. Satellite-based estimation of air-sea latent and sensible fluxes, providing broad coverage, require measurements of sea surface temperature, ocean-surface wind speed, and air temperature and humidity above sea surface. Because no single satellite has been able to provide simultaneous measurements of these input variables, they typically come from various satellites with different spatial resolutions and sampling times that can be offset by hours. These factors introduce errors in the estimated heat fluxes and their gradients that are not well documented. As a model-based assessment of these errors, we performed a simulation using a Weather Research and Forecasting (WRF) model forced by high-resolution blended satellite SST for the Gulf Stream extension region with a 3-km resolution and with 30-minute output. Latent and sensible heat fluxes were first computed from input variables with the original model resolutions and at coincident times. We then computed the heat fluxes by (1) decimating the input variables to various resolutions from 12.5 to 50 km, and (2) offsetting the “sampling” times of some input variables from others by 3 hours. The resultant estimations of heat fluxes and their gradients from (1) and (2) were compared with the counterparts without reducing resolution and without temporal offset of the input variables. The results show that reducing input-variable resolutions from 12.5 to 50 km weakened the magnitudes of the time-mean and instantaneous heat fluxes and their gradients substantially, for example, by a factor of two for the time-mean gradients. The temporal offset of input variables substantially impacted the instantaneous fluxes and their gradients, although not their time-mean values. The implications of these effects on scientific and operational applications of heat flux products will be discussed. Finally, we highlight a mission concept for providing simultaneous, high-resolution measurements of boundary-layer variables from a single satellite to improve air-sea turbulent heat flux estimation.</p>


Sign in / Sign up

Export Citation Format

Share Document