Influence of foam agent content and talc filler on the microcellular and mechanical properties of injection molded polypropylene and talc filled polypropylene composite foams

2014 ◽  
Vol 50 (6) ◽  
pp. 563-576 ◽  
Author(s):  
SH Yetgin ◽  
H Unal ◽  
A Mimaroglu
2019 ◽  
Vol 9 (7) ◽  
pp. 1308 ◽  
Author(s):  
Rob Kleijnen ◽  
Manfred Schmid ◽  
Konrad Wegener

This work describes the production of a spherical polybutylene terephthalate (PBT) powder and its processing with selective laser sintering (SLS). The powder was produced via melt emulsification, a continuous extrusion-based process. PBT was melt blended with polyethylene glycol (PEG), creating an emulsion of spherical PBT droplets in a PEG matrix. Powder could be extracted after dissolving the PEG matrix phase in water. The extrusion settings were adjusted to optimize the size and yield of PBT particles. After classification, 79 vol. % of particles fell within a range of 10–100 µm. Owing to its spherical shape, the powder exhibited excellent flowability and packing properties. After powder production, the width of the thermal processing (sintering) window was reduced by 7.6 °C. Processing of the powder on a laser sintering machine was only possible with difficulties. The parts exhibited mechanical properties inferior to injection-molded specimens. The main reason lied in the PBT being prone to thermal degradation and hydrolysis during the powder production process. Melt emulsification in general is a process well suited to produce a large variety of SLS powders with exceptional flowability.


2021 ◽  
Vol 30 ◽  
pp. 263498332110081
Author(s):  
Rui Li ◽  
Guisen Fan ◽  
Xiao Ouyang ◽  
Guojun Wang ◽  
Hao Wei

Composite foams with 10–50 vol% hollow polymeric microspheres were prepared using bisphenol A epoxy resin and polyetheramine curing agent as the matrix. The results demonstrated that the density, hardness, and static mechanical properties of the epoxy resin/hollow polymer microsphere composite foams, as well as their dynamic mechanical properties under forced non-resonance, were similar to those of polymer/hollow glass microsphere composite foams. At 25°C and under 1–100 Hz forced resonance, the first-order and second-order resonance frequencies of the composite foams shifted to the low-frequency region as the volume fraction of hollow polymer microspheres increased. Meanwhile, the first-order and second-order loss factors of the as-prepared composite foams were improved by 41.7% and 103.3%, respectively, compared with the pure epoxy resin. Additionally, the first-order and second-order loss factors of the as-prepared composite foams reached a maximum at 40 vol% and 30 vol% hollow polymer microspheres, respectively. This research helps us to expand the application range of composite foam materials in damping research.


2021 ◽  
Vol 36 (3) ◽  
pp. 276-286
Author(s):  
Z. Dekel ◽  
S. Kenig

Abstract The mechanical, electrical, thermal, and rheological properties of micro injection molded nanocomposites comprising 2% and 5% carbon nanotubes (CNTs) incorporated in polycarbonate (PC), and polyamide 66 (PA) were studied. The design of experiments method was used to investigate the composition-process – properties relationship. Results indicated that the process variables significantly affected the flow patterns and resulting morphology during the filling stage of the microinjection molding (lIM) process, using 0.45 mm diameter lIM samples. Two distinct flow regimes have been identified in lIM using the low cross-section samples. The first was a conventional “fountain flow,” which resulted in a skin/core structure and reduced volume resistivity up to 10 X cm in the case of 5% CNTs and up to 100 X cm in 2% CNTs, in both polymers, respectively. In addition, inferior mechanical properties were obtained, attributed to polymer degradation under high shear rate conditions, when practicing high injection speeds, high mold temperatures, and high screw rotation velocities. The second was a “plug flow” due to wall slippage, obtained under low injection speeds, low mold temperatures, and low rotation velocities, leading to a substantial increase in modulus of elasticity (60%) with increased electrical resistivity up to 103 X cm for 5% CNTs and 105 X cm for 2% CNTs, respectively. The rheological percolation threshold was obtained at 2% CNTs while the electrical threshold was attained at 0.4% CNTs, in both polymers. It was concluded that in lIM, the process conditions should be closely monitored. In the case of high viscous heating, degradation of mechanical properties was obtained, while skin- core morphology formation enhanced electrical conductivity.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Artur Kościuszko ◽  
Dawid Marciniak ◽  
Dariusz Sykutera

Dimensions of the injection-molded semi-crystalline materials (polymeric products) decrease with the time that elapses from their formation. The post-molding shrinkage is an effect of secondary crystallization; the increase in the degree of polymer crystallinity leads to an increase in stiffness and decrease in impact strength of the polymer material. The aim of this study was to assess the changes in the values of post-molding shrinkage of polypropylene produced by injection molding at two different temperatures of the mold (20 °C and 80 °C), and conditioned for 504 h at 23 °C. Subsequently, the samples were annealed for 24 h at 140 °C in order to conduct their accelerated aging. The results of shrinkage tests were related to the changes of mechanical properties that accompany the secondary crystallization. The degree of crystallinity of the conditioned samples was determined by means of density measurements and differential scanning calorimetry. It was found that the changes in the length of the moldings that took place after removal from the injection mold were accompanied by an increase of 20% in the modulus of elasticity, regardless of the conditions under which the samples were made. The differences in the shrinkage and mechanical properties of the samples resulting from mold temperature, as determined by tensile test, were removed by annealing. However, the samples made at two different injection mold temperature values still significantly differed in impact strength, the values of which were clearly higher for the annealed samples compared to the results determined for the samples immediately after the injection molding.


Sign in / Sign up

Export Citation Format

Share Document