Dry sliding wear behavior of Saffil fiber-reinforced Mg-10Gd-3Y-0.5Zr magnesium alloy-based composites

2010 ◽  
Vol 45 (6) ◽  
pp. 683-693 ◽  
Author(s):  
Bin Hu ◽  
Liming Peng ◽  
Wenjiang Ding

Dry sliding wear behavior of the creep-resistant magnesium alloy Mg-10Gd-3Y-0.5Zr and its composites have been investigated in this study. Magnesium matrix composites are prepared by squeezing casting infiltration of Mg alloy into Saffil preforms. Wear tests are conducted using ball-on-flat sliding wear set up under a sliding velocity range of 1-15 cm/s and at an applied load range of 1-8 N for a constant sliding distance of 150 m. According to results, mechanical and wear-resistance properties of magnesium alloy improved by introducing Saffil fibers, and the alumina binder composite has a higher strength and lower wear rate than silica binder composite. The wear rates of the matrix alloy, composites and their counter-face balls increase with increasing applied load. The increment of sliding velocities decreases the wear rate of the matrix alloy under the tested sliding velocities. A critical threshold of sliding velocity for the wear rate of both composites and their counter-faces is about 9 cm/s. Abrasion and plastic deformation are considered to be the dominant mechanism for the matrix alloy in tested conditions, and for both composites under low sliding velocity (<10 cm/s) and at low applied loads (1-5 N). Delamination is the wear mechanism of the silica binder composites at a high applied load (8 N). Adhesion and oxidation are the controlling wear mechanism of matrix alloy and composites under a sliding velocity of 15 cm/s.

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2013 ◽  
Vol 6 (2) ◽  
pp. 139-153
Author(s):  
Israa .A.K

This research is devoted to study the effect of addition of different weight percent from SiCp ( 2, 4, 6, 8 ) to Al– 4 Cu alloy which have been fabricated by liquid metallurgy method on the dry sliding wear behavior and mechanical properties. Wear characteristics of Al–SiC composites have been investigated under dry sliding conditions and compared with base alloy. Dry sliding wear tests have been carried out using pin-on-disk wear test under normal applied loads 5, 10, 15 and 20 N and at different sliding velocity of (2.7, 3.7, 4.7) m/sec. It was also observed that the wear rate varies linearly with increases normal applied load but lower in composites as compared to the base material. The wear mechanism appears to be oxidative for both Al – Cu alloy and composites under the given conditions of load and sliding velocity as indicated by optical microscopic of the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight percent of silicon carbide. The best results have been obtained at 8 % wt SiC . We also observed that the yield strength, tensile strength increases with increasing wt% of SiC , but the ductility decreases.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Rajesh Shanmugavel ◽  
Thirumalai Kumaran Sundaresan ◽  
Uthayakumar Marimuthu ◽  
Pethuraj Manickaraj

This work presents the application of hybrid approach for optimizing the dry sliding wear behavior of red mud based aluminum metal matrix composites (MMCs). The essential input parameters are identified as applied load, sliding velocity, wt.% of reinforcement, and hardness of the counterpart material, whereas the output responses are specific wear rate and Coefficient of Friction (COF). The Grey Relational Analysis (GRA) is performed to optimize the multiple performance characteristics simultaneously. The Principle Component Analysis (PCA) and entropy methods are applied to evaluate the values of weights corresponding to each output response. The experimental result shows that the wt.% of reinforcements (Q=34.9%) followed by the sliding velocity (Q=34.5%) contributed more to affecting the dry sliding wear behavior. The optimized conditions are verified through the confirmation test, which exhibited an improvement in the grey relational grade of specific wear rate and COF by 0.3 and 0.034, respectively.


2019 ◽  
Vol 26 (09) ◽  
pp. 1950052
Author(s):  
SUBBARAYAN SIVASANKARAN

The present research paperfocusses on manufacture of AlSi6Cu4–3 wt.% TiO2 metal matrix composite (MMC) through liquid metallurgy route, and the manufactured composites are tested for their dry sliding wear behavior using response surface methodology (RSM). The extensive microstructural investigation is carried out to examine the dispersion of Titania particles, its bonding ability, and embedment characteristics with the matrix. The wear rate on the developed MMC is investigated and predicted using regression model. Further, the confirmation test is conducted to validate the model. The microstructures of the composite had revealed that TiO2 particles are dispersed in the Al matrix. Further, the surface plots show that the wear rate started to vary linearly with the function of load whereas the wear rate starts to vary nonlinearly with the function of the sliding velocity and the sliding distance. In addition, the worn surfaces were investigated through the scanning electron microscopewhich addressed the wear mechanisms and revealed that TiO2 particles enhance the wear performance of aluminum alloy by a reduction in material removal at all wear conditions.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
N. Akaberi ◽  
R. Taghiabadi ◽  
A. Razaghian

The effect of bifilm oxides on the dry sliding wear behavior of Fe-rich (1.5 wt.%) F332 Al–Si alloy under as-cast and T6 heat-treated conditions was investigated. Toward this end, the surface oxides were intentionally incorporated into the molten alloy by surface agitation. The results showed that, after sliding under the applied load of 75 N, due to the presence of bifilms, the wear rate of base (0.2 wt.% Fe) and 1.5 wt.% Fe-containing alloys increased by almost 22% and 14%, respectively. The results also indicated that, despite the positive effect on the hardness, T6 heat treatment adversely affected the wear resistance of alloys made under surface turbulence condition. This negative effect can be attributed to the expansion of bifilms which, during heat treatment, are converted to the potential sites for initiation and propagation of subsurface microcracks. However, the strengthening effect exerted by the thermally modified β-Al5FeSi platelets showed that it can compensate the negative effects of bifilm oxides because it improves the wear rate of 1.5 wt.% Fe-containing F332-T6 alloy by about 5% under the applied load of 75 N.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


2014 ◽  
Vol 10 (2) ◽  
pp. 276-287
Author(s):  
Rajesh Siriyala ◽  
A. Gopala Krishna ◽  
P. Rama Murthy Raju ◽  
M. Duraiselvam

Purpose – Since, wear is the one of the most commonly encountered industrial problems leading to frequent replacement of components there is a need to develop metal matrix composites (MMCs) for achieving better wear properties. The purpose of this paper is to fabricate aluminum MMCs to improve the dry sliding wear characteristics. An effective multi-response optimization approach called the principal component analysis (PCA) was used to identify the sets of optimal parameters in dry sliding wear process. Design/methodology/approach – The present work investigates the dry sliding wear behavior of graphite reinforced aluminum composites produced by the molten metal mixing method by means of a pin-on-disc type wear set up. Dry sliding wear tests were carried on graphite reinforced MMCs and its matrix alloy sliding against a steel counter face. Different contact stress, reinforcement percentage, sliding distance and sliding velocity were selected as the control variables and the response selected was wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Optimization of dry sliding performance of the graphite reinforced MMCs was performed using PCA. Findings – Based on the PCA, the optimum level parameters for overall principal component (PC) of WVL and COF have been identified. Moreover, analysis of variance was performed to know the impact of individual factors on overall PC of WVL and COF. The results indicated that the reinforcement percentage was found to be most effective factor among the other control parameters on dry sliding wear followed by sliding distance, sliding velocity and contact stress. Finally the wear surface morphology of the composites has been investigated using scanning electron microscopy. Practical implications – Various manufacturing techniques are available for processing of MMCs. Each technique has its own advantages and disadvantages. In particular, some techniques are significantly expensive compared to others. Generally the manufacturer prefers the low cost technique. Therefore stir casting technique which was used in this paper for manufacturing of Aluminum MMCs is the best alternative for processing of MMCs in the present commercial sectors. Since the most important criteria of a dry sliding wear behavior is to provide lower WVL and COF, this study has intended to prove the application of PCA technique for solving multi objective optimization problem in wear applications like piston rings, piston rods, cylinder heads and brake rotors, etc. Originality/value – Application of multi-response optimization technique for evaluation of tribological characteristics for Aluminum MMCs made up of graphite particulates is a first-of-its-kind approach in literature. Hence PCA method can be successfully used for multi-response optimization of dry sliding wear process.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


Sign in / Sign up

Export Citation Format

Share Document