Isolation of residual shear stress effects in slitting measurement of residual normal stress in laminated composites

2013 ◽  
Vol 48 (7) ◽  
pp. 791-798 ◽  
Author(s):  
Mahmood M Shokrieh ◽  
Saeed Akbari
2016 ◽  
Vol 27 (1) ◽  
pp. 32-46 ◽  
Author(s):  
Jia-Liang Zhang ◽  
De-Guang Shang ◽  
Yu-Juan Sun ◽  
Xiao-Wei Wang

The aim of this paper is to propose a modified multiaxial high-cycle fatigue criterion based on the critical plane approach. The proposed criterion contains three parameters, that is, shear stress amplitude, normal stress amplitude and mean normal stress. In order to take into account the mean shear stress effects, the critical plane is determined by the maximum shear stress. In the proposed multiaxial fatigue criterion, the influence of mean normal stress on fatigue damage is also considered. Based on the proposed criterion, the multiaxial fatigue life is predicted, and the results showed a good agreement with experimental data obtained from some literatures.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Sueng-Won Jeong ◽  
Kabuyaya Kighuta ◽  
Dong-Eun Lee ◽  
Sung-Sik Park

The shear and particle crushing characteristics of the failure plane (or shear surface) in catastrophic mass movements are examined with a ring shear apparatus, which is generally employed owing to its suitability for large deformations. Based on results of previous experiments on waste materials from abandoned mine deposits, we employed a simple numerical model based on ring shear testing using the particle flow code (PFC2D). We examined drainage, normal stress, and shear velocity dependent shear characteristics of landslide materials. For shear velocities of 0.1 and 100 mm/s and normal stress (NS) of 25 kPa, the numerical results are in good agreement with those obtained from experimental results. The difference between the experimental and numerical results of the residual shear stress was approximately 0.4 kPa for NS equal to 25 kPa and 0.9 kPa for NS equal to 100 kPa for both drained and undrained condition. In addition, we examined particle crushing effect during shearing using the frictional work concept in PFC. We calculated the work done by friction at both peak and residual shear stresses, and then used the results as crushing criteria in the numerical analysis. The frictional work at peak and the residual shear stresses was ranged from 303 kPa·s to 2579 kPa·s for given drainage and normal stress conditions. These results showed that clump particles were partially crushed at peak shear stress, and further particle crushing with respect to the production of finer in shearing was recorded at residual shear stress at the shearing plane.


Author(s):  
Quanshun Luo

AbstractX-ray diffraction has been widely used in measuring surface residual stresses. A drawback of the conventional d ~ sin2ψ method is the increased uncertainty arising from sin2ψ splitting when a significant residual shear stress co-exists with a residual normal stress. In particular, the conventional method can only be applied to measure the residual normal stress while leaving the residual shear stress unknown. In this paper, we propose a new approach to make simultaneous measurement of both residual normal and shear stresses. Theoretical development of the new approach is described in detail, which includes two linear regressions, $$\frac{{d}_{\psi }+ {d}_{-\psi }}{2}$$ d ψ + d - ψ 2 ~sin2ψ and {dψ-d-ψ} ~ sin(2ψ), to determine the residual normal and shear stresses separately. Several samples were employed to demonstrate the new method, including turning-machined and grinding-machined cylindrical bars of a high strength steel as well as a flat sample of magnetron sputtered TiN coating. The machined samples were determined to have residual compressive normal stresses at both the axial and hoop directions as well as various scales of residual shear stresses. The TiN coating showed a high scale of residual compressive (normal) stress whereas the measured residual shear stress was extremely low. The new method showed significantly increased precision as compared to the conventional d ~ sin2ψ method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Semra Zuhal Birol ◽  
Rana Fucucuoglu ◽  
Sertac Cadirci ◽  
Ayca Sayi-Yazgan ◽  
Levent Trabzon

AbstractAtherosclerosis is a long-term disease process of the vascular system that is characterized by the formation of atherosclerotic plaques, which are inflammatory regions on medium and large-sized arteries. There are many factors contributing to plaque formation, such as changes in shear stress levels, rupture of endothelial cells, accumulation of lipids, and recruitment of leukocytes. Shear stress is one of the main factors that regulates the homeostasis of the circulatory system; therefore, sudden and chronic changes in shear stress may cause severe pathological conditions. In this study, microfluidic channels with cavitations were designed to mimic the shape of the atherosclerotic blood vessel, where the shear stress and pressure difference depend on design of the microchannels. Changes in the inflammatory-related molecules ICAM-1 and IL-8 were investigated in THP-1 cells in response to applied shear stresses in an continuous cycling system through microfluidic channels with periodic cavitations. ICAM-1 mRNA expression and IL-8 release were analyzed by qRT-PCR and ELISA, respectively. Additionally, the adhesion behavior of sheared THP-1 cells to endothelial cells was examined by fluorescence microscopy. The results showed that 15 Pa shear stress significantly increases expression of ICAM-1 gene and IL-8 release in THP-1 cells, whereas it decreases the adhesion between THP-1 cells and endothelial cells.


1987 ◽  
Vol 109 (2) ◽  
pp. 232-237 ◽  
Author(s):  
K. Craig ◽  
R. H. Buckholz ◽  
G. Domoto

This paper studies the rapid simple shearing flow of dry cohesionless metal powders contained between parallel rotating plates. In this study, an annular shear cell test apparatus was used; the dry metal powders are rapidly sheared by rotating one of the shear surfaces while the other shear surface remains fixed. Such a flow geometry is of interest to tribologists working in the area of dry or powder lubrication. The shear stress and normal stress on the stationary surface are measured as a function of the following parameters: shear surface boundary material and roughness, the shear-cell gap thickness, the shear-rate and the fractional solids content. Both the fractional solids content and the gap thickness are kept at prescribed values during stress measurements. In this experiment the metal powder tested is different from the shear transmission surface material; the effect on the measured normal and shear stress data are reported. The results show the dependence of the normal stress and the shear stress on the shear-rate, particle density and particle diameter. Likewise, a significant stress dependence on both the fractional solids content and the shear-cell gap thickness was observed.


1996 ◽  
Vol 12 (03) ◽  
pp. 167-171
Author(s):  
G. Bezine ◽  
A. Roy ◽  
A. Vinet

A finite-element technique is used to predict the shear stress and normal stress distribution in adherends for polycarbonate/polycarbonate single lap joints subjected to axial loads. Numerical and photoelastic results are compared so that a validation of the numerical model is obtained. The influences on stresses of the overlap length and the shape of the adherends are studied.


2015 ◽  
Vol 25 (1) ◽  
pp. 22-30 ◽  
Author(s):  
G. A. Hossne ◽  
J. Méndez ◽  
M. Trujillo ◽  
F. Parra

Sign in / Sign up

Export Citation Format

Share Document