Three-dimensional nanoprepreg and nanostitched aramid/phenolic multiwall carbon nanotubes composites: Experimental determination of in-plane shear

2019 ◽  
Vol 53 (28-30) ◽  
pp. 4077-4096 ◽  
Author(s):  
Kadir Bilisik ◽  
Gulhan Erdogan ◽  
Erdal Sapanci ◽  
Sila Gungor

In-plane shear of nanostitched three-dimensional para-aramid/phenolic composites were experimentally investigated. Adding the nanostitched fiber into nanoprepreg para-aramid fabric preform composites slightly improved their shear strengths. The carbon-stitched composite exhibited comparatively better performance compared to the para-aramid stitched composite probably due to well bonding between carbon fiber and phenolic resin. The stitched nano composites had mainly matrix breakages and micro shear hackles in the matrix; matrix debonding and filament pull-out in the composite interface; fibrillar peeling and stripping on the filaments due to angular deformation. This mechanism probably prohibited extensive interlaminar opening in the nanostitched composites. The result exhibited that the introducing of the nano stitched fiber where multiwall carbon nanotubes were transferred to the out-of-plane of the base structure enhanced its transverse fracture as a form of confined delamination area. Therefore, the damaged tolerance properties of the stitched nano composites were enhanced compared to the base.

2015 ◽  
Vol 7 (4) ◽  
pp. 1280-1292 ◽  
Author(s):  
Saman Azodi-Deilami ◽  
Ebadullah Asadi ◽  
Majid Abdouss ◽  
Fardin Ahmadi ◽  
Alireza Hassani Najafabadi ◽  
...  

A highly selective voltammetric sensor for the determination of meloxicam using a MIP@MWCNT–CPE is introduced.


2019 ◽  
Vol 53 (24) ◽  
pp. 3413-3431 ◽  
Author(s):  
Kadir Bilisik ◽  
Nesrin Karaduman ◽  
Gulhan Erdogan ◽  
Erdal Sapanci ◽  
Sila Gungor

The in-plane shear properties of nanostitched three-dimensional (3D) carbon/epoxy composites were investigated. Adding the stitching fiber or multiwalled carbon nanotubes or nanostitched fiber into carbon fabric preform slightly improved the shear strength and modulus of stitched and stitched nanocomposites. The in-plane shear fracture of the base and nanostructures was extensive delamination and tensile fiber failures in the sheared region. But, the stitched and stitched nanocomposites had angular deformation of the stitching yarns in the fiber scissoring areas, shear hackles in the matrix and successive fiber breakages in the interlayers. Probably, this mechanism prohibited extensive interlayer opening in the nanostitched composites. The results exhibited that introducing the stitching fiber (1.44%) and multiwalled carbon nanotubes (0.03125%) in the base structure enhanced its transverse fracture properties as a form of confined delamination area. Therefore, the damaged tolerance properties of the stitched nanocomposites were enhanced.


2015 ◽  
Vol 34 (23) ◽  
pp. 1926-1936 ◽  
Author(s):  
Gustavo Vargas ◽  
José Ángel Ramos ◽  
Juan De Gracia ◽  
Julen Ibarretxe ◽  
Faustino Mujika

RSC Advances ◽  
2016 ◽  
Vol 6 (108) ◽  
pp. 107094-107103 ◽  
Author(s):  
Piyush Kumar Sonkar ◽  
Vellaichamy Ganesan ◽  
S. Abraham John ◽  
Dharmendra Kumar Yadav ◽  
Rupali Gupta

Nickel salophen (where salophen is N,N′-bis(salicylidene)-1,2-phenylenediamine) is immobilized on multiwall carbon nanotubes. This new material is utilized for electrocatalytic oxidization and sensitive determination of glucose in human blood samples.


Sign in / Sign up

Export Citation Format

Share Document