In-situ damage sensing in intra-ply glass/carbon laminate composites under interlaminar shear loading

2021 ◽  
pp. 002199832110492
Author(s):  
Matthew Pires ◽  
Vijaya Chalivendra

An experimental study is preformed to investigate the in-situ damage sensing capabilities of intra-ply hybrid carbon/glass laminate and epoxy composites under quasi-static interlaminar shear loading. A three-dimensional electrical sensory network is generated inside the composites through embedded carbon nanotubes (CNTs) in an epoxy matrix along with the carbon fibers in the intra-ply hybrid laminates. CNTs are dispersed in the epoxy matrix using a combination of ultrasonication and shear mixing techniques. Four circumferential ring probes are used to examine the electrical response under interlaminar shear load. The effect of four different intra-ply orientations (((0–90)C, where carbon fibers are oriented along the loading direction), ((0–90)G, where glass fibers are oriented along the loading direction), ((45/−45, where glass and carbon fibers are oriented at 45o/−45o and the laminates are repeated), and ((45/−45)A, where glass and carbon fibers are oriented at 45o/−45o and the laminates are alternated)) on the shear constitutive behavior and the damage detection are discussed. Intra-ply orientations of (45/−45) and (45/−45)A showed higher interlaminar shear strength and shear strain at break compared to (0/90)C and (0/90)G orientations. Out of all four orientations, (45/−45)A provided a better resolution of electrical response for damage sensing applications.

2014 ◽  
Vol 1611 ◽  
pp. 153-158
Author(s):  
C. Rodríguez ◽  
M. Hinojosa ◽  
J. Aldaco ◽  
A. Cázares

ABSTRACTIn this work we report the fractographic study of polymer matrix composites specimens reinforced with glass and carbon fibers. Specimens of a polyester matrix composite with 30% of E-glass fibers are prepared and fractured in flexure mode. We also test an epoxy matrix composite with 30% carbon fibers, which is fractured in flexure mode. All specimens are manufactured based on the D790 ASTM standard for bending mode at room temperature. As an exception, the composites with epoxy matrix and reinforced with carbon fiber are cured in an autoclave. The most commonly observed fracture mechanisms are debonding in the interphase, delamination, Chevron lines, microbuckling, river patterns and radial fracture on the fibers.


2019 ◽  
Author(s):  
Martha Grady ◽  
Cassandra Birrenkott ◽  
Preston A. May ◽  
ScottR. White ◽  
Jeffrey S. Moore ◽  
...  

Functionalization of planar and curved glass surfaces with spiropyran (SP) molecules and localized UV-induced activation of the mechanophore are demonstrated. Fluorescence spectra of UV-irradiated SP-functionalized surfaces reveal that increases in surface roughness or curvature produces more efficient conversion of the mechanophore to the open merocyanine (MC) form. Further, force-induced activation of the mechanophore is achieved at curved glass-polymer interfaces and not planar interfaces. Minimal fluorescence signal from UV-irradiated SP-functionalized planar glass surfaces precluded mechanical activation testing. Curved glass-polymer interfaces are prepared by SP functionalization of E-glass fibers, which are subsequently embedded in a poly(methyl methacrylate) (PMMA) matrix. Mechanical activation is induced through shear loading by a single fiber microbond testing protocol. In situ detection of SP activation at the interface is monitored by fluorescence spectroscopy.<br>


2019 ◽  
Vol 41 (4) ◽  
pp. 655-655
Author(s):  
Muhammad Abdul Basit Muhammad Abdul Basit ◽  
Sybt e anwar Qais Sybt e anwar Qais ◽  
Muhammad Saffee Ullah Malik and Ghufran Ur Rehman Muhammad Saffee Ullah Malik and Ghufran Ur Rehman ◽  
Faizan Siddique Awan Faizan Siddique Awan ◽  
Laraib Alam Khan and Tayyab Subhani Laraib Alam Khan and Tayyab Subhani

Carbon fiber reinforced polymeric matrix composites are enormously used in aerospace and automotive industries due to their enhanced specific properties. However, the area of interlaminar shear properties still needs investigation so as to produce composites with improved through-the-thickness properties. To improve interlaminar shear properties of these composites, acid-functionalized multiwalled carbon nanotubes were deposited on de-sized carbon fibers through electrophoretic deposition. De-sizing of carbon fabric was performed through three different methods: furnace heating, acidic treatment and chloroform usage. As the acid-treatment provided better results than other two techniques, the acid-de-sized carbon fibers were coated with nanotubes and subsequently incorporated in epoxy matrix to prepare a novel class of multiscale composites using vacuum assisted resin transfer molding technique. Nearly 30% rise in the interlaminar shear strength of the composites was obtained which was credited to the coating of nanotubes on the surface of carbon fibers. The increased adhesion between carbon fibers and epoxy matrix due to mechanical interlocking of nanotubes was found to be the possible reason of improved interlaminar shear properties.


2013 ◽  
Vol 748 ◽  
pp. 74-78
Author(s):  
Qiang Song ◽  
Ke Zhi Li ◽  
He Jun Li ◽  
Qian Gang Fu

Straight carbon nanotubes (CNTs) with radially-growing morphologies and long length were grafted on carbon fibers by catalytic chemical vapor deposition and they were used to reinforce carbon/carbon composites (C/Cs). Mechanical tests indicate that CNTs can increase the interlaminar shearing strength of C/Cs by about 200 %. The reinforcement mechanism was concretely discussed with emphasis placed on the change of the cohesion of pyrocarbon matrix.


2015 ◽  
Vol 24 (4) ◽  
pp. 096369351502400 ◽  
Author(s):  
Han Zhang ◽  
Yi Liu ◽  
Emiliano Bilotti ◽  
Ton Peijs

The in-situ damage sensing of carbon/epoxy composites during interlaminar shear testing is investigated. Next to direct monitoring of woven fabric carbon/epoxy reference laminates, the introduction of carbon nanotubes (CNTs) onto these carbon fibre fabrics via a spray coating technique for damage sensing is evaluated. We observed very different sensing behaviour compared to previous studies, which is believed to be more useful for real applications. Through-thickness measurements showed for both reference and CNT modified specimens a continuous increase in electrical resistivity, due to reduced contact areas and conductive pathways. The effect of the introduced CNT network at the interfacial region is also been compared and analysed.


2019 ◽  
Author(s):  
Martha Grady ◽  
Cassandra Birrenkott ◽  
Preston A. May ◽  
ScottR. White ◽  
Jeffrey S. Moore ◽  
...  

Functionalization of planar and curved glass surfaces with spiropyran (SP) molecules and localized UV-induced activation of the mechanophore are demonstrated. Fluorescence spectra of UV-irradiated SP-functionalized surfaces reveal that increases in surface roughness or curvature produces more efficient conversion of the mechanophore to the open merocyanine (MC) form. Further, force-induced activation of the mechanophore is achieved at curved glass-polymer interfaces and not planar interfaces. Minimal fluorescence signal from UV-irradiated SP-functionalized planar glass surfaces precluded mechanical activation testing. Curved glass-polymer interfaces are prepared by SP functionalization of E-glass fibers, which are subsequently embedded in a poly(methyl methacrylate) (PMMA) matrix. Mechanical activation is induced through shear loading by a single fiber microbond testing protocol. In situ detection of SP activation at the interface is monitored by fluorescence spectroscopy.<br>


2019 ◽  
Author(s):  
Martha Grady ◽  
Cassandra Birrenkot ◽  
Preston A. May ◽  
ScottR. White ◽  
Jeffrey S. Moore ◽  
...  

Functionalization of planar and curved glass surfaces with spiropyran (SP) molecules and localized UV-induced activation of the mechanophore are demonstrated. Fluorescence spectra of UV-irradiated SP-functionalized surfaces reveal that increases in surface roughness or curvature produces more efficient conversion of the mechanophore to the open merocyanine (MC) form. Further, force-induced activation of the mechanophore is achieved at curved glass-polymer interfaces and not planar interfaces. Minimal fluorescence signal from UV-irradiated SP-functionalized planar glass surfaces precluded mechanical activation testing. Curved glass-polymer interfaces are prepared by SP functionalization of E-glass fibers, which are subsequently embedded in a poly(methyl methacrylate) (PMMA) matrix. Mechanical activation is induced through shear loading by a single fiber microbond testing protocol. In situ detection of SP activation at the interface is monitored by fluorescence spectroscopy.<br>


Small Methods ◽  
2021 ◽  
pp. 2100202
Author(s):  
Tiantian Dai ◽  
Zanhong Deng ◽  
Xiaodong Fang ◽  
Huadong Lu ◽  
Yong He ◽  
...  

2021 ◽  
Vol 199 ◽  
pp. 113820
Author(s):  
Thomas J. Cochell ◽  
Raymond R. Unocic ◽  
José Graña-Otero ◽  
Alexandre Martin

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1667
Author(s):  
Mikhail Karushev

Fast and reversible cobalt-centered redox reactions in metallopolymers are the key to using these materials in energy storage, electrocatalytic, and sensing applications. Metal-centered electrochemical activity can be enhanced via redox matching of the conjugated organic backbone and cobalt centers. In this study, we present a novel approach to redox matching via modification of the cobalt coordination site: a conductive electrochemically active polymer was electro-synthesized from [Co(Amben)] complex (Amben = N,N′-bis(o-aminobenzylidene)ethylenediamine) for the first time. The poly-[Co(Amben)] films were investigated by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), in situ UV‑vis-NIR spectroelectrochemistry, and in situ conductance measurements between −0.9 and 1.3 V vs. Ag/Ag+. The polymer displayed multistep redox processes involving reversible transfer of the total of 1.25 electrons per repeat unit. The findings indicate consecutive formation of three redox states during reversible electrochemical oxidation of the polymer film, which were identified as benzidine radical cations, Co(III) ions, and benzidine di-cations. The Co(II)/Co(III) redox switching is retained in the thick polymer films because it occurs at potentials of high polymer conductivity due to the optimum redox matching of the Co(II)/Co(III) redox pair with the organic conjugated backbone. It makes poly-[Co(Amben)] suitable for various practical applications based on cobalt-mediated redox reactions.


Sign in / Sign up

Export Citation Format

Share Document