Determination of the Mechanical Properties of Composite Materials by Tensile Tests. Part I: Elastic Properties

1998 ◽  
Vol 32 (4) ◽  
pp. 310-334 ◽  
Author(s):  
B. Gommers ◽  
I. Verpoest ◽  
P. Van Houtte
2010 ◽  
Vol 44 (21) ◽  
pp. 2487-2507 ◽  
Author(s):  
G. Vargas ◽  
F. Mujika

The aim of this work is to compare from an experimental point of view the determination of in-plane shear strength of unidirectional composite materials by means of two off-axis tests: three-point flexure and tensile. In the case of the off-axis three-point flexure test, the condition of small displacements and the condition of lift-off between the specimen and the fixture supports have been taken into account. Some considerations regarding stress and displacement fields are presented. The in-plane shear characterization has been performed on a carbon fiber reinforced unidirectional laminate with several fiber orientation angles: 10°, 20°, 30°, and 45°. Test conditions for both off-axis experimental methods, in order to ensure their applicability, are presented. Off-axis flexure test is considered more suitable than off-axis tensile test for the determination of in-plane shear strength.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540025 ◽  
Author(s):  
Hitoshi Takagi ◽  
Antonio N. Nakagaito ◽  
Kazuya Kusaka ◽  
Yuya Muneta

Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.


Author(s):  
J. Brnic ◽  
M. Canadija ◽  
G. Turkalj ◽  
D. Lanc

In this paper, some interesting, experimentally determined actualities referring to the 50CrMo4 steel are presented. That way, the mechanical properties of the material are derived from uniaxial tensile tests at lowered and elevated temperatures. Engineering stress versus strain diagrams for both mentioned temperatures, curves representing the effect of temperature on specimen elongation, and short-time creep curves are given. Notch impact energy test was also carried out. Taking into consideration the service life of the final product of the mentioned steel widely used in engine and machine technology, all of the mentioned data may be relevant during design and manufacturing procedure.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1688
Author(s):  
Marius Marinel Stănescu ◽  
Dumitru Bolcu

When obtaining environment-friendly hybrid resins made of a blend of Dammar natural resin, in a prevailing volume ratio, with epoxy resin, it is challenging to find alternatives for synthetic resins. Composite materials reinforced with waste paper and matrix made of epoxy resin or hybrid resin with a volume ratio of 60%, 70% and 80% Dammar were studied. All samples obtained have been submitted to tensile tests and Scanning Electron Microscopy (SEM) analysis. The tensile response, tensile strength, modulus of elasticity, elongation at break and the analysis of the fracture surface were determined. The damping properties of vibrations of bars in hybrid resins and in the composite materials under study were also examined. The mechanical properties of the four types of resins and of the composite materials were compared. The chemical composition for a hybrid resin specimen were obtained using the Fourier Transformed Infrared Spectroscopy (FTIR) and Energy, Dispersive X-ray Spectrometry (EDS) analyzes.


1987 ◽  
Vol 103 ◽  
Author(s):  
Robert C. Cammarata

ABSTRACTEnhancements in the elastic moduli by factors of two or more in compositionally modulated metallic thin films have been observed for a certain range of composition modulation wavelengths. The experimental and theoretical understanding of this phenomenon, known as the supermodulus effect, is reviewed. Also, the mechanical properties of other artificially layered and composite materials are discussed and compared with the behavior of metallic superlattice thin films.


Sign in / Sign up

Export Citation Format

Share Document