scholarly journals Epithelial TRPV1 Signaling Accelerates Gingival Epithelial Cell Proliferation

2014 ◽  
Vol 93 (11) ◽  
pp. 1141-1147 ◽  
Author(s):  
N. Takahashi ◽  
Y. Matsuda ◽  
H. Yamada ◽  
K. Tabeta ◽  
T. Nakajima ◽  
...  

Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca2+ levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation.

2021 ◽  
Author(s):  
Javier Casas ◽  
Clara Meana ◽  
José Ramón López-López ◽  
Jesús Balsinde ◽  
María A. Balboa

ABSTRACTToll-like receptor 4, the receptor for bacterial lipopolysaccharide (LPS), drives inflammatory responses that protect against pathogens and boost the adaptive immunity. LPS responses are known to depend on calcium fluxes, but the molecular mechanisms involved are poorly understood. Here we present evidence that the transient receptor potential canonical channel 3 (TRPC3) is activated intracellularly during macrophage exposure to LPS and is essential for Ca2+ release from internal stores. In this way TRPC3 participates in cytosolic Ca2+ elevations, TLR4 endocytosis, activation of inflammatory transcription factors and cytokine upregulation. We also report that TRPC3 is activated by diacylglycerol (DAG) generated by the phosphatidic acid phosphatase lipin-1. In accord with this, lipin-1-deficient cells show reduced Ca2+ responses to LPS challenge. A cameleon indicator directed to the endoplasmic reticulum shows that this is the organelle from which TRPC3 mediates the Ca2+ release. Finally, pharmacological inhibition of TRPC3 reduces systemic inflammation induced by LPS in mice. Collectively, our study unveils a central component of LPS-triggered Ca2+ signaling that involves intracellular sensing of lipin-1-derived DAG by TRPC3.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhi-Chuan Sun ◽  
Sui-Bin Ma ◽  
Wen-Guang Chu ◽  
Dong Jia ◽  
Ceng Luo

Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.


Life ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 233
Author(s):  
Aude Lafoux ◽  
Sabine Lotteau ◽  
Corinne Huchet ◽  
Sylvie Ducreux

The transient receptor potential vanilloid 1 (TRPV1) belongs to the transient receptor potential superfamily of sensory receptors. TRPV1 is a non-selective cation channel permeable to Ca2+ that is capable of detecting noxious heat temperature and acidosis. In skeletal muscles, TRPV1 operates as a reticular Ca2+-leak channel and several TRPV1 mutations have been associated with two muscle disorders: malignant hyperthermia (MH) and exertional heat stroke (EHS). Although TRPV1−/− mice have been available since the 2000s, TRPV1’s role in muscle physiology has not been thoroughly studied. Therefore, the focus of this work was to characterize the contractile phenotype of skeletal muscles of TRPV1-deficient mice at rest and after four weeks of exercise. As MS and EHS have a higher incidence in men than in women, we also investigated sex-related phenotype differences. Our results indicated that, without exercise, TRPV1−/− mice improved in vivo muscle strength with an impairment of skeletal muscle in vitro twitch features, i.e., delayed contraction and relaxation. Additionally, exercise appeared detrimental to TRPV1−/− slow-twitch muscles, especially in female animals.


Author(s):  
Bhupesh Vaidya ◽  
Shyam Sunder Sharma

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the symptoms of motor deficits and cognitive decline. There are a number of therapeutics available for the treatment of PD, but most of them suffer from serious side effects such as bradykinesia, dyskinesia and on-off effect. Therefore, despite the availability of these pharmacological agents, PD patients continue to have an inferior quality of life. This has warranted a need to look for alternate strategies and molecular targets. Recent evidence suggests the Transient Receptor Potential (TRP) channels could be a potential target for the management of motor and non-motor symptoms of PD. Though still in the preclinical stages, agents targeting these channels have shown immense potential in the attenuation of behavioral deficits and signaling pathways. In addition, these channels are known to be involved in the regulation of ionic homeostasis, which is disrupted in PD. Moreover, activation or inhibition of many of the TRP channels by calcium and oxidative stress has also raised the possibility of their paramount involvement in affecting the other molecular mechanisms associated with PD pathology. However, due to the paucity of information available and lack of specificity, none of these agents have gone into clinical trials for PD treatment. Considering their interaction with oxidative stress, apoptosis and excitotoxicity, TRP channels could be considered as a potential future target for the treatment of PD.


2006 ◽  
Vol 85 (10) ◽  
pp. 900-904 ◽  
Author(s):  
C.-K. Park ◽  
H.Y. Li ◽  
K.-Y. Yeon ◽  
S.J. Jung ◽  
S.-Y. Choi ◽  
...  

Although eugenol is widely used in dentistry, little is known about the molecular mechanisms responsible for its anesthetic properties. In addition to calcium channels, recently demonstrated by our group, there could be another molecular target for eugenol. Using a whole-cell patch-clamp technique, we investigated the effect of eugenol on voltage-gated sodium channel currents ( I Na) in rat dental primary afferent neurons identified by retrograde labeling with a fluorescent dye in maxillary molars. Eugenol inhibited action potentials and I Na in both capsaicin-sensitive and capsaicin-insensitive neurons. The pre-treatment with capsazepine, a competitive antagonist of transient receptor potential vanilloid 1 (TRPV1), failed to block the inhibitory effect of eugenol on I Na, suggesting no involvement of TRPV1. Two types of I Na, tetrodotoxin (TTX)-resistant and TTX-sensitive I Na, were inhibited by eugenol. Our results demonstrated that eugenol inhibits I Na in a TRPV1-independent manner. We suggest that I Na inhibition by eugenol contributes to its analgesic effect.


Sign in / Sign up

Export Citation Format

Share Document