Abnormal WNT5A Signaling Causes Mandibular Hypoplasia in Robinow Syndrome

2017 ◽  
Vol 96 (11) ◽  
pp. 1265-1272 ◽  
Author(s):  
S. Hosseini-Farahabadi ◽  
S.J. Gignac ◽  
A. Danescu ◽  
K. Fu ◽  
J.M. Richman

The study of rare genetic diseases provides valuable insights into human gene function. Here, we investigate dominant Robinow syndrome (RS), which affects the WNT5A signaling pathway. Autosomal dominant RS is caused by missense mutations in WNT5A or nonsense mutations in the adaptor protein DVL1 or DVL3. The recessive form of the disease is caused by loss-of-function mutations in the receptor ROR2. RS is characterized by hypertelorism, midface, and mandibular hypoplasia. Here, we focus on the missense mutations in WNT5A, since the impact on function is difficult to predict from in silico analysis. We used chicken embryo to express wild-type or 2 mutant versions of human WNT5A in the mandible and then examined the morphologic, cellular, and molecular effects. The 3 experimental viruses—wt WNT5A, WNT5AC83S, or WNT5AC182R—all caused shortening of the mandible on the injected side as compared with GFP controls. Although the phenotypes initially appeared similar, we uncovered specific disruption of chondrocyte polarity and shape, inhibition of cell migration, differences in target gene expression, and absence of JNK signaling only in the presence of mutant viruses. In addition, the missense mutations do not appear to block receptor binding, since in paracrine experiments, the mutant protein inhibits cell migration. In this study, we ruled out a straightforward gain or loss of function caused by the WNT5A missense mutations. Instead, the mutations are likely redirecting WNT signaling away from JNK-PCP toward other noncanonical pathways. We conclude that in RS, WNT5A missense mutations have dominant neomorphic effects that interfere with the function of the wild-type protein.

2020 ◽  
Author(s):  
Benjamin Ng ◽  
Anissa A. Widjaja ◽  
Sivakumar Viswanathan ◽  
Jinrui Dong ◽  
Sonia P. Chothani ◽  
...  

AbstractGenetic loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and craniosynostosis. The impact of genetic LOF in IL11 has not been characterized. We generated IL11-knockout (Il11-/-) mice, which are born in normal Mendelian ratios, have normal hematological profiles and are protected from bleomycin-induced lung fibro-inflammation. Noticeably, baseline IL6 levels in the lungs of Il11-/- mice are lower than those of wild-type mice and are not induced by bleomycin damage, placing IL11 upstream of IL6. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation and show evidence of reduced autocrine IL11 activity. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have a craniosynostosis-like phenotype and exhibit mildly reduced body weights. These data highlight similarities and differences between LOF in IL11 or IL11RA while establishing further the role of IL11 signaling in fibrosis and stromal inflammation.


2018 ◽  
Author(s):  
Aa Haeruman Azam ◽  
Fumiya Hoshiga ◽  
Ippei Takeuchi ◽  
Kazuhiko Miyanaga ◽  
Yasunori Tanji

ABSTRACTWe have previously generated strains ofStaphylococcus aureusSA003 resistant to its specific phage ϕSA012 through long-term coevolution experiment. However, the DNA mutations responsible for the phenotypic change of phage resistance are unknown. Whole-genome analysis revealed six genes that acquired unique point mutations: five missense mutations and one nonsense mutation. Moreover, one deletion, 1.779-bp, resulted in the deletion of the genes encoding glycosyltransferase, TarS, and iron-sulfure repair protein, ScdA. The deletion occurred from the second round of coculture (SA003R2) and remained through the last round. The ϕSA012 infection toward SA003R2 had decreased to 79.77±7.50% according to plating efficiency. Complementation of the phage-resistant strain by the wild-type allele showed two mutated host genes were linked to the inhibition of post-adsorption, and five genes were linked to phage adsorption of ϕSA012. Unlike ϕSA012, infection by ϕSA039, a close relative of ϕSA012, onto SA003R2 was impaired drastically. Complementation of SA003R2 by wild-typetarSrestores the infectivity of ϕSA039. Thus, we concluded that ϕSA039 requires β-GlcNAc in Wall Teichoic Acid (WTA) for its binding. In silico analysis of the ϕSA039 genome revealed that several proteins in the tail and baseplate region were different from ϕSA012; notably the partial deletion oforf96of ϕSA039, a homolog oforf99of ϕSA012.Orf100of ϕSA039, a homolog ofOrf103of ϕSA012, a previously reported receptor binding protein (RBP), had low similarity (86%) to that of ϕSA012. The difference in tail and baseplate proteins might be the factor for specificity difference between ϕSA012 and ϕSA039.


2000 ◽  
Vol 348 (3) ◽  
pp. 621-632 ◽  
Author(s):  
Sunqu ZHANG ◽  
Richard BAGSHAW ◽  
William HILSON ◽  
Yuko OHO ◽  
Alina HINEK ◽  
...  

We have identified and characterized three missense mutations in a patient with type 1 GM1 gangliosidosis, namely a substitution of G for A at nucleotide position 1044 (G1044 → A; in exon 10) on one allele, which converts Asp332 into asparagine, and both a mutation (C492 → A in exon 4, leading to the amino acid change of Arg148 → Ser) and a polymorphism (A1644 → G in exon 15, leading to a change of Ser532 → Gly) on the other allele. This patient had less than 1% residual β-galactosidase activity and minimally detectable levels of immunoreactive β-galactosidase protein in fibroblasts. To account for the above findings, a series of expression and immunolocalization studies were undertaken to assess the impact of each mutation. Transient overexpression in COS-1 cells of cDNAs encoding Asp332Asn, Arg148Ser and Ser532Gly mutant β-galactosidases produced abundant amounts of precursor β-galactosidase, with activities of 0, 84 and 81% compared with the cDNA clone for wild-type β-galactosidase (GP8). Since the level of vector-driven expression is much less in Chinese hamster ovary (CHO) cells than in COS-1 cells, and we knew that exogenous β-galactosidase undergoes lysosomal processing when expressed in these cells, transient expression studies were performed of Arg148Ser and Ser532Gly, which yielded active forms of the enzyme. In this case, the Arg148Ser and Ser532Gly products gave rise to 11% and 86% of the control activity respectively. These results were not unexpected, since the Arg148Ser mutation introduced a major conformational change into the protein, and we anticipated that it would be degraded in the endoplasmic reticulum (ER), whereas the polymorphism was expected to produce near-normal activity. To examine the effect of the Asp332Asn mutation on the catalytic activity, we isolated CHO clones permanently transfected with the Asp332Asn and Asp332Glu constructs, purified the enzymes by substrate-analogue-affinity chromatography, and determined their kinetic parameters. The Vmax values of both mutant recombinant enzymes were markedly reduced (less than 0.9% of the control), and the Km values were unchanged compared with the corresponding wild-type enzyme isolated at the same time. Both the Arg148Ser β-galactosidase in CHO cells and Asp332Asn β-galactosidases (in COS-1 and CHO cells) produced abundant immunoreaction in the perinuclear area, consistent with localization in the ER. A low amount was detected in lysosomes. Incubation of patient fibroblasts in the presence of leupeptin, which reduces the rate of degradation of lysosomal β-galactosidase by thiol proteases, had no effect on residual enzyme activity, and immunostaining was again detected largely in the perinuclear area (localized to the ER) with much lower amounts in the lysosomes. In summary, the Arg148Ser mutation has no effect on catalytic activity, whereas the Asp332Asn mutation seriously reduces catalytic activity, suggesting that Asp332 might play a role in the active site. Immunofluorescence studies indicate the expressed mutant proteins with Arg148Ser and Asp332Asn mutations are held up in the ER, where they are probably degraded, resulting in only minimum amounts of the enzyme becoming localized in the lysosomes. These results are completely consistent with findings in the cultured fibroblasts. Our results imply that most of the missense mutations described in GM1 gangliosidosis to date have little effect on catalytic activity, but do affect protein conformation such that the resulting protein cannot be transported out of the ER and fails to arrive in the lysosome. This accounts for the minimal amounts of enzyme protein and activity seen in most GM1 gangliosidosis patient fibroblasts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zijing Zhou ◽  
Jinyuan Vero Li ◽  
Boris Martinac ◽  
Charles D. Cox

Missense mutations in the gene that encodes for the mechanically-gated ion channel Piezo1 have been linked to a number of diseases. Gain-of-function variants are linked to a hereditary anaemia and loss-of-function variants have been linked to generalized lymphatic dysplasia and bicuspid aortic valve. Two previously characterized mutations, S217L and G2029R, both exhibit reduced plasma membrane trafficking. Here we show that both mutations also display reduced stability and higher turnover rates than wild-type Piezo1 channels. This occurs through increased ubiquitination and subsequent proteasomal degradation. Congruent with this, proteasome inhibition using N-acetyl-l-leucyl-l-leucyl-l-norleucinal (ALLN) reduced the degradation of both mutant proteins. While ALLN treatment could not rescue the function of S217L we show via multiple complementary methodologies that proteasome inhibition via ALLN treatment can not only prevent G2029R turnover but increase the membrane localized pool of this variant and the functional Piezo1 mechanosensitive currents. This data in combination with a precision medicine approach provides a new potential therapeutic avenue for the treatment of Piezo1 mediated channelopathies.


2020 ◽  
Vol 19 (06) ◽  
pp. 2041002
Author(s):  
Satishkumar Ranganathan Ganakammal ◽  
Mahesh Koirala ◽  
Bohua Wu ◽  
Emil Alexov

Background: The multiple endocrine neoplasia type 1 (MEN1) gene located on chromosome 11q13 encodes menin protein. Previously reported mutations were thought to result in loss of function of menin protein and that they are associated with multiple endocrine neoplasia 1 disorder. However, recently menin has also been characterized as an oncosuppressor protein and it was suggested that mutations in it are associated with various other tumors. Studies indicate that the menin protein stimulates the estrogen receptor (ER) that in turn increases the predisposition for inherited breast cancer. Methods: Here, we used our supervised in-house combinatory in-silico predictor method to investigate the impact of unclassified missense mutations in MEN1 gene found in breast cancer tissue. We also examined the biophysical and biochemical properties to predict the effects of these missense variants on the menin protein stability and interactions. The results are compared with the effects of known pathogenic mutations in menin causing neoplasia. Results: Our analysis indicates that some of the variants found in breast cancer tissue show similar pattern of destabilizing the menin protein and its interactions as the pathogenic variants associated with neoplasia. Taking together with the results of our in-silico consensus predictor, we classify missense mutations in menin protein found in breast cancer tissue into pathogenic and benign, and thus, suggesting as an indicator for early detection of elevated breast cancer risk.


2000 ◽  
Vol 148 (5) ◽  
pp. 957-970 ◽  
Author(s):  
Valérie Petit ◽  
Brigitte Boyer ◽  
Delphine Lentz ◽  
Christopher E. Turner ◽  
Jean Paul Thiery ◽  
...  

Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin–Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin–Crk complex in the collagen-induced cell motility.


2021 ◽  
Vol 23 (1) ◽  
pp. 162
Author(s):  
Yu-Shan Lin ◽  
Yi-Hsin Lin ◽  
MyHang Nguyen Thi ◽  
Shih-Chuan Hsiao ◽  
Wen-Tai Chiu

The dysregulation of store-operated Ca2+ entry (SOCE) promotes cancer progression by changing Ca2+ levels in the cytosol or endoplasmic reticulum. Stromal interaction molecule 1 (STIM1), a component of SOCE, is upregulated in several types of cancer and responsible for cancer cell migration, invasion, and metastasis. To explore the impact of STIM1-mediated SOCE on the turnover of focal adhesion (FA) and cell migration, we overexpressed the wild-type and constitutively active or dominant negative variants of STIM1 in an osteosarcoma cell line. In this study, we hypothesized that STIM1-mediated Ca2+ elevation may increase cell migration. We found that constitutively active STIM1 dramatically increased the Ca2+ influx, calpain activity, and turnover of FA proteins, such as the focal adhesion kinase (FAK), paxillin, and vinculin, which impede the cell migration ability. In contrast, dominant negative STIM1 decreased the turnover of FA proteins as its wild-type variant compared to the cells without STIM1 overexpression while promoting cell migration. These unexpected results suggest that cancer cells need an appropriate amount of Ca2+ to control the assembly and disassembly of focal adhesions by regulating calpain activity. On the other hand, overloaded Ca2+ results in excessive calpain activity, which is not beneficial for cancer metastasis.


2018 ◽  
Author(s):  
Sofia Caria ◽  
Bryce Z Stewart ◽  
Patrick O Humbert ◽  
Marc Kvansakul

Scribble is a crucial adaptor protein that plays a pivotal role during establishment and control of cell polarity, impacting many physiological processes ranging from cell migration to immunity and organization of tissue architecture. Scribble harbors a leucine-rich repeat domain and four PDZ domains, which mediate most of Scribbles interactions with other proteins. It has become increasingly clear that posttranslational modifications substantially impact Scribble-ligand interactions, with phosphorylation being a major modulator of binding to Scribble. To better understand how Scribble PDZ domains direct cell polarity signalling and how phosphorylation impacts this process, we investigated Scribble interactions with MCC (mutated in colorectal cancer). We systematically evaluated the ability of all four individual Scribble PDZ domains to bind the PDZ-binding motif (PBM) of wild-type MCC as well as MCC phosphorylated at the -1 Ser position. We show that Scribble PDZ1 and PDZ3 are the major interactors with MCC, and that modifications to Ser at the -1 position in the MCC PBM only has a modest effect on binding to Scribble PDZ domains. We then examined the structural basis for these observations by determining the crystal structures of Scribble PDZ1 domain bound to both the wild-type MCC PBM as well as phosphorylated MCC. Our structures indicated that phospho-Ser at the -1 position in MCC is not involved in major contacts with Scribble PDZ1, and in conjunction with our affinity measurements suggest that the impact of phosphorylation at the -1 position of MCC extends beyond a simple modulation of the affinity for Scribble PDZ domains.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009132
Author(s):  
Alexis M. Thornton ◽  
Lishan Fang ◽  
April Lo ◽  
Maria McSharry ◽  
David Haan ◽  
...  

While advancements in genome sequencing have identified millions of somatic mutations in cancer, their functional impact is poorly understood. We previously developed the expression-based variant impact phenotyping (eVIP) method to use gene expression data to characterize the function of gene variants. The eVIP method uses a decision tree-based algorithm to predict the functional impact of somatic variants by comparing gene expression signatures induced by introduction of wild-type (WT) versus mutant cDNAs in cell lines. The method distinguishes between variants that are gain-of-function, loss-of-function, change-of-function, or neutral. We present eVIP2, software that allows for pathway analysis (eVIP Pathways) and usage with RNA-seq data. To demonstrate the eVIP2 software and approach, we characterized two recurrent frameshift variants in RNF43, a negative regulator of Wnt signaling, frequently mutated in colorectal, gastric, and endometrial cancer. RNF43 WT, RNF43 R117fs, RNF43 G659fs, or GFP control cDNA were overexpressed in HEK293T cells. Analysis with eVIP2 predicted that the frameshift at position 117 was a loss-of-function mutation, as expected. The second frameshift at position 659 has been previously described as a passenger mutation that maintains the RNF43 WT function as a negative regulator of Wnt. Surprisingly, eVIP2 predicted G659fs to be a change-of-function mutation. Additional eVIP Pathways analysis of RNF43 G659fs predicted 10 pathways to be significantly altered, including TNF-α via NFκB signaling, KRAS signaling, and hypoxia, highlighting the benefit of a more comprehensive approach when determining the impact of gene variant function. To validate these predictions, we performed reporter assays and found that each pathway activated by expression of RNF43 G659fs, but not expression of RNF43 WT, was identified as impacted by eVIP2, supporting that RNF43 G659fs is a change-of-function mutation and its effect on the identified pathways. Pathway activation was further validated by Western blot analysis. Lastly, we show primary colon adenocarcinoma patient samples with R117fs and G659fs variants have transcriptional profiles similar to BRAF missense mutations with activated RAS/MAPK signaling, consistent with KRAS signaling pathways being GOF in both variants. The eVIP2 method is an important step towards overcoming the current challenge of variant interpretation in the implementation of precision medicine. eVIP2 is available at https://github.com/BrooksLabUCSC/eVIP2.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Xiao Wang ◽  
Avanthi Raghavan ◽  
A. Christina Vourakis ◽  
Alexandra E Sperry ◽  
Wenjun Li ◽  
...  

Human genetics studies have demonstrated a strong link between ANGPTL3 , which encodes lipoprotein lipase inhibitor Angiopoietin-like 3, and blood lipid phenotypes. Rare nonsense ANGPTL3 mutations were identified in patients with familial combined hypolipidemia, while common variants at the ANGPTL3 locus have been found by genome-wide association studies (GWASs) to associate with lower triglycerides (TGs) and low-density lipoprotein cholesterol. In light of the seemingly favorable clinical consequences of ANGPTL3 deficiency, we established an experimental framework to identify (1) causal common variants that regulate ANGPTL3 expression and (2) rare missense mutations that disrupt ANGPTL3 function. Using massively parallel reporter assays, we profiled the regulatory activity of all the common variants linked ( r 2 ≥ 0.5) to the lead GWAS SNP in the ANGPTL3 locus and found that rs10889356 demonstrated significant allele-specific enhancer activity. To validate this finding, we used CRISPR-Cas9 to alter the SNP in a human pluripotent stem cell line. When differentiated into hepatocytes, altered cells displayed a 67% increase in ANGPTL3 expression ( n = 4 wild-type and 4 mutant clones, P = 0.007). CRISPR interference using each of three guide RNAs targeting the SNP in HepG2 cells also substantially increased ANGPTL3 expression. These findings support rs10889356- ANGPTL3 as a causal SNP-gene set. Next, we examined the coding regions of ANGPTL3 in 20,000 sequenced individuals and sought to experimentally define rare missense variants using a mouse model. We used CRISPR-Cas9 to generate Angptl3 knockout mice, which exhibited decreased TG (61%, P < 0.001) and decreased cholesterol (31%, P < 0.002). We reconstituted the knockout mice to normal expression levels with adenoviruses expressing either wild-type ANGPTL3 or missense variant ANGPTL3 . So far we have assessed 28 rare missense variants computationally predicted to be deleterious, of which only 10—D42N, K58E, S117P, P264S, Q286H, L315S, L360Q, T383I, T383S, and Y417C—were validated as loss-of-function (conferring <25% of wild-type activity as assessed by changes in both TG and cholesterol levels), underscoring the need for functional characterization of variants of uncertain significance.


Sign in / Sign up

Export Citation Format

Share Document