Mapping the Brassica Genome

1993 ◽  
Vol 22 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Derek Lydiate ◽  
Andrew Sharpe ◽  
Ulf Lagercrantz ◽  
Isobel Parkin

The six cultivated species of Brassica furnish a wide range of crop types (including oilseed, vegetable and fodder crops) which seem quite different when observed under normal cultivation (Figure 1). However, Brassica species and a large number of other wild and cultivated species are all closely related (Figure 2) and genetic exchange through sexual crosses is possible across most of this very extensive gene pool. Traditionally, the investigation of genome organization in plants has employed cytology to study chromosomes and genetic markers to define linkage groups. Cytology is difficult in Brassica because the chromosomes are small, but the genus is very amenable to investigations using molecular-genetic markers because of the high degree of natural polymorphism. Gene homology and the general structure of the genome seems to be conserved between Brassica and related genera and modern marker technologies are freely interchangeable across this group. However, the collinearity of related chromosomes in different Brassica species has been disrupted frequently by chromosomal translocations. Thus Brassica species have quite distinct genetic maps, in contrast to cereal species where collinear homoeologous chromosomes are the general rule. The mapping of the Brassica genome will have a considerable impact on the breeding of Brassica crops. In particular, it will facilitate the transfer of beneficial genes between species and the rapid introgression of genes from wild plants into useful cultivars. These improvements in breeding should be translated into crops which are more easily adapted to suit the needs of new agronomic practices and the demands of a changing environment.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christos Katsaros ◽  
Sophie Le Panse ◽  
Gillian Milne ◽  
Carl J. Carrano ◽  
Frithjof Christian Küpper

Abstract The objective of the present study is to examine the fine structure of vegetative cells of Laminaria digitata using both chemical fixation and cryofixation. Laminaria digitata was chosen due to its importance as a model organism in a wide range of biological studies, as a keystone species on rocky shores of the North Atlantic, its use of iodide as a unique inorganic antioxidant, and its significance as a raw material for the production of alginate. Details of the fine structural features of vegetative cells are described, with particular emphasis on the differences between the two methods used, i.e. conventional chemical fixation and freeze-fixation. The general structure of the cells was similar to that already described, with minor differences between the different cell types. An intense activity of the Golgi system was found associated with the thick external cell wall, with large dictyosomes from which numerous vesicles and cisternae are released. An interesting type of cisternae was found in the cryofixed material, which was not visible with the chemical fixation. These are elongated structures, in sections appearing tubule-like, close to the external cell wall or to young internal walls. An increased number of these structures was observed near the plasmodesmata of the pit fields. They are similar to the “flat cisternae” found associated with the forming cytokinetic diaphragm of brown algae. Their possible role is discussed. The new findings of this work underline the importance of such combined studies which reveal new data not known until now using the old conventional methods. The main conclusion of the present study is that cryofixation is the method of choice for studying Laminaria cytology by transmission electron microscopy.


2021 ◽  
Vol 9 (4) ◽  
pp. 862
Author(s):  
Vittoria Catara ◽  
Jaime Cubero ◽  
Joël F. Pothier ◽  
Eran Bosis ◽  
Claude Bragard ◽  
...  

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.


1994 ◽  
Vol 58 (2) ◽  
pp. 81-85 ◽  
Author(s):  
D. HUNT ◽  
V. VAN HEYNINGEN ◽  
C. JONES ◽  
C. McCONVILLE ◽  
F. J. BENHAM

Author(s):  

Abstract A new distribution map is provided for Circulifer tenellus (Baker) (Homopt., Cicadellidae) (Beet Leaf hopper) Hosts: Sugar-beet, tomato, cucurbits, spinach and a wide range of wild plants. Vector of curly top of beet in North America. Information is given on the geographical distribution in EUROPE, Sicily, Spain, ASIA, Israel, AFRICA, Algeria, Canary Islands, Egypt, Libya, Morocco, Republic of South Africa, South-West Africa, Sudan, Tunisia, AUSTRALASIA and PACIFIC ISLANDS, Hawaii, NORTH AMERICA, Mexico, U.S.A., CENTRAL AMERICA and WEST INDIES, West Indies.


Author(s):  
Siyan Zhao ◽  
Chen Zhang ◽  
Matthew J. Rogers ◽  
Xuejie Zhao ◽  
Jianzhong He

As a group, Dehalococcoides dehalogenate a wide range of organohalide pollutants but the range of organohalide compounds that can be utilized for reductive dehalogenation differs among the Dehalococcoides strains. Dehalococcoides lineages cannot be reliably disambiguated in mixed communities using typical phylogenetic markers, which often confounds bioremediation efforts. Here, we describe a computational approach to identify Dehalococcoides genetic markers with improved discriminatory resolution. Screening core genes from the Dehalococcoides pangenome for degree of similarity and frequency of 100% identity found a candidate genetic marker encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function. This gene exhibits the fewest completely identical amino acid sequences and among the lowest average amino acid sequence identity in the core pangenome. Primers targeting BNR could effectively discriminate between 40 available BNR sequences ( in silico ) and 10 different Dehalococcoides isolates ( in vitro ). Amplicon sequencing of BNR fragments generated from 22 subsurface soil samples revealed a total of 109 amplicon sequence variants, suggesting a high diversity of Dehalococcoides distributed in environment. Therefore, the BNR gene can serve as an alternative genetic marker to differentiate strains of Dehalococcoides in complicated microbial communities. Importance The challenge of discriminating between phylogenetically similar but functionally distinct bacterial lineages is particularly relevant to the development of technologies seeking to exploit the metabolic or physiological characteristics of specific members of bacterial genera. A computational approach was developed to expedite screening of potential genetic markers among phylogenetically affiliated bacteria. Using this approach, a gene encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function was selected and evaluated as a genetic marker to differentiate strains of Dehalococcoides , an environmentally relevant genus of bacteria whose members can transform and detoxify a range of halogenated organic solvents and persistent organic pollutants, in complex microbial communities to demonstrate the validity of the approach. Moreover, many apparently phylogenetically distinct, currently uncharacterized Dehalococcoides were detected in environmental samples derived from contaminated sites.


Author(s):  
Sattar B. Sadkhan Al Maliky ◽  
Nidaa A. Abbas

To reach the high depths of knowledge and expertise that are required nowadays, scientists focus their attention on minute areas of study. However, the most complex problems faced by scientists still need the application of different disciplines to tackle them, which creates a necessity for multi-disciplinary collaboration. Cryptology is naturally a multidisciplinary field, drawing techniques from a wide range of disciplines and connections to many different subject areas. In recent years, the connection between algebra and cryptography has tightened, and established computational problems and techniques have been supplemented by interesting new approaches and ideas. Cryptographic engineering is a complicated, multidisciplinary field. It encompasses mathematics (algebra, finite groups, rings, and fields), probability and statistics, computer engineering (hardware design, ASIC, embedded systems, FPGAs), and computer science (algorithms, complexity theory, software design), control engineering, digital signal processing, physics, chemistry, and others. This chapter provides an introduction to the disciplinary, multidisciplinary, and their general structure (interdisciplinary, trans-disciplinary, and cross-disciplinary). And it also gives an introduction to the applications of the multidisciplinary approaches to some of the cryptology fields. In addition, the chapter provides some facts about the importance of the suitability and of the multidisciplinary approaches in different scientific, academic, and technical applications.


1999 ◽  
Vol 9 (6) ◽  
pp. AP1-AP8 ◽  
Author(s):  
Robert G. Steen ◽  
Anne E. Kwitek-Black ◽  
Christopher Glenn ◽  
Jo Gullings-Handley ◽  
William Van Etten ◽  
...  

The laboratory rat (Rattus norvegicus) is a key animal model for biomedical research. However, the genetic infrastructure required for connecting phenotype and genotype in the rat is currently incomplete. Here, we report the construction and integration of two genomic maps: a dense genetic linkage map of the rat and the first radiation hybrid (RH) map of the rat. The genetic map was constructed in two F2 intercrosses (SHRSP × BN and FHH × ACI), containing a total of 4736 simple sequence length polymorphism (SSLP) markers. Allele sizes for 4328 of the genetic markers were characterized in 48 of the most commonly used inbred strains. The RH map is a lod ≥ 3 framework map, including 983 SSLPs, thereby allowing integration with markers on various genetic maps and with markers mapped on the RH panel. Together, the maps provide an integrated reference to >3000 genes and ESTs and >8500 genetic markers (5211 of our SSLPs and >3500 SSLPs developed by other groups). [Bihoreau et al. (1997); James and Tanigami, RHdb (http://www.ebi.ac.uk/RHdb/index.html); Wilder (http://www.nih.gov/niams/scientific/ratgbase); Serikawa et al. (1992); RATMAP server (http://ratmap.gen.gu.se)] RH maps (v. 2.0) have been posted on our web sites at http://goliath.ifrc.mcw.edu/LGR/index.htmlor http://curatools.curagen.com/ratmap. Both web sites provide an RH mapping server where investigators can localize their own RH vectors relative to this map. The raw data have been deposited in the RHdb database. Taken together, these maps provide the basic tools for rat genomics. The RH map provides the means to rapidly localize genetic markers, genes, and ESTs within the rat genome. These maps provide the basic tools for rat genomics. They will facilitate studies of multifactorial disease and functional genomics, allow construction of physical maps, and provide a scaffold for both directed and large-scale sequencing efforts and comparative genomics in this important experimental organism.


2019 ◽  
Vol 11 (14) ◽  
pp. 3790 ◽  
Author(s):  
Farshid Aram ◽  
Ebrahim Solgi ◽  
Ester Higueras García ◽  
Danial Mohammadzadeh S. ◽  
Amir Mosavi ◽  
...  

Considering citizens’ perceptions of their living environment is very helpful in making the right decisions for city planners who intend to build a sustainable society. Mental map analyses are widely used in understanding the level of perception of individuals regarding the surrounding environment. The present study introduces Aram Mental Map Analyzer (AMMA), an open-source program, which allows researchers to use special features and new analytical methods to receive outputs in numerical data and analytical maps with greater accuracy and speed. AMMA performance is contingent upon two principles of accuracy and complexity, the accuracy of the program is measured by Accuracy Placed Landmarks (APL) and General Orientation (GO), which respectively analyses the landmark placement accuracy and the main route mapping accuracy. Also, the complexity section is examined through two analyses Cell Percentage (CP) and General Structure (GS), which calculates the complexity of citizens’ perception of space based on the criteria derived from previous studies. AMMA examines all the dimensions and features of the graphic maps and its outputs have a wide range of valid and differentiated information, which is tailored to the research and information subject matter that is required.


Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 548-554 ◽  
Author(s):  
R. S. Kota ◽  
K. S. Gill ◽  
B. S. Gill ◽  
T. R. Endo

We have constructed a cytogenetically based physical map of chromosome 1B in common wheat by utilizing a total of 18 homozygous deletion stocks. It was possible to divide chromosome 1B into 17 subregions. Nineteen genetic markers are physically mapped to nine subregions of chromosome 1B. Comparison of the cytological map of chromosome 1B with an RFLP-based genetic linkage map of Triticum tauschii revealed that the linear order of the genetic markers was maintained between chromosome 1B of hexaploid wheat and 1D of T. tauschii. Striking differences were observed between the physical and genetic maps in relation to the relative distances between the genetic markers. The genetic markers clustered in the middle of the genetic map were physically located in the distal regions of both arms of chromosome 1B. It is unclear whether the increased recombination in the distal regions of chromosome 1B is due to specific regions of increased recombination or a more broadly distributed increase in recombination in the distal regions of Triticeae chromosomes.Key words: common wheat, chromosome 1B, homozygous deletion lines, physical map, RFLP markers.


1967 ◽  
Vol 125 (5) ◽  
pp. 847-862 ◽  
Author(s):  
Stephen D. Litwin ◽  
Henry G. Kunkel

The genetic control of γG1-heavy chains was investigated by taking advantage of two recently described genetic antigens, Gm(z) and Gm(y), both produced by heteroimmunization of rabbits with myeloma proteins. These were studied in conjunction with known genetic markers, Gm(a) and Gm(f). The results indicated that among Caucasians there are two major allelic genes, Gmza and Gmfy, coding for distinct varieties of γG1-heavy chains. Each of these contains a pair of genetic antigens which are located on different fragments of the chain and can be separated by enzymatic splitting with papain. The different areas of the heavy chains appear to be under the control of the same gene. In Mongoloid populations a grouping of three genetic antigens, Gm(f), (y), and (a), was found on isolated myeloma proteins and normal γ-globulins indicating the presence of a Gmfya gene. The possible genetic events leading to the contrasting Caucasian and Mongoloid genes are discussed. In the γ-globulin system the occurrence of multiple genetic antigens in different positions of the same heavy chains is the general rule. A better understanding of the relationships between the genes for the γG1-subgroup to those for the γG2- and γG3-subgroup has been obtained through the use of the multiple genetic markers. Strong evidence was obtained for intergenic crossover mechanisms to explain racial differences in the relationships of these genes as well as certain unusual gene complexes found through family studies. Further evidence was obtained for mapping the closely linked genes for the three subgroups in a specific order.


Sign in / Sign up

Export Citation Format

Share Document