scholarly journals Rosiglitazone enhances the apoptotic effect of 5-fluorouracil in colorectal cancer cells with high-glucose-induced glutathione

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988644
Author(s):  
Meng-Fei Lau ◽  
Kek-Heng Chua ◽  
Vikineswary Sabaratnam ◽  
Umah Rani Kuppusamy

Colorectal cancer is one of the most prevalent noncommunicable diseases worldwide. 5-Fluorouracil is the mainstay of chemotherapy for colorectal cancer. Previously, we have demonstrated that high glucose diminishes the cytotoxicity of 5-fluorouracil by promoting cell cycle progression. The synergistic impact of rosiglitazone on 5-fluorouracil-induced apoptosis was further investigated in this study. Besides control cell lines (CCD-18Co), two human colonic carcinoma cell lines (HCT 116 and HT 29) were exposed to different treatments containing 5-fluorouracil, rosiglitazone or 5-fluorouracil/rosiglitazone combination under normal glucose (5.5 mM) and high-glucose (25 mM) conditions. The cellular oxidative stress level was evaluated with biomarkers of nitric oxide, advanced oxidation protein products, and reduced glutathione. The cell apoptosis was assessed using flow cytometry technique. High glucose caused the production of reduced glutathione in HCT 116 and HT 29 cells. Correspondingly, high glucose suppressed the apoptotic effect of 5-fluorouracil and rosiglitazone. As compared to 5-fluorouracil alone (2 µg/mL), addition of rosiglitazone significantly enhanced the apoptosis (increment rate of 5–20%) in a dose-dependent manner at normal glucose and high glucose levels. This study indicates that high-glucose-induced reduced glutathione confers resistance to apoptosis, but it can be overcome upon treatment of 5-fluorouracil and 5-fluorouracil/rosiglitazone combination. Rosiglitazone may be a promising antidiabetic drug to reduce the chemotherapeutic dose of 5-fluorouracil for colorectal cancer complicated with hyperglycemia.

Author(s):  
İlknur Çınar Ayan ◽  
Sümeyra Çetinkaya ◽  
Hatice Gül Dursun ◽  
Canan Eroğlu Güneş ◽  
Seda Şirin

Background: In the treatment of colorectal cancer (CRC), the search for new antineoplastic drugs with fewer side effects and more effectiveness continues. A significant part of these pursuits and efforts focus on medicinal herbs and plant components derived from these plants. A. ketenoglui is one of these medicinal plants, and its anticancer potential has never been studied before. Methods: The phenolic and flavonoid content, and antioxidant activity of A. ketenoglui extracts were determined. The phytochemical profiling and quantification analysis of major components were performed by HPLC-ESI-Q-TOF-MS. Cytotoxicity, proliferation, apoptosis and cell cycle were evaluated to reveal the anticancer activity of the extract on CRC cells (HCT 116 and HT-29). The determined anticancer activity was confirmed by mRNA (RT-qPCR) and protein (Western blotting) analyzes. Results: A. ketenoglui methanol extract was found to have high phenolic (281.89±0.23) and flavonoid (33.80±0.15) content and antioxidant activity (IC50 40.03±0.38). According to the XTT assay, the extract has strong cytotoxic activity (IC50 350 µM in HCT 116 and IC50 263 µM in HT-29 cell line). The compounds most commonly found in the plant are, in descending order, chlorogenic acid, apigenin, genistin, baicalin, eupatorin, casticin, and luteolin. In flowcytometric analysis, the extract was found to induce greater apoptosis and cell cycle arrest in both cell lines than in both control and positive control (casticin). According to the results of the mRNA expression analysis, the extract treatment upregulated the expression of the critical genes of the cell cycle and apoptosis, such as p53, p21, caspase-3, and caspase-9. In protein expression analysis, an increase in caspase-3 and p53 expression was observed in both cell lines treated with the extract. In addition, caspase-9 expression was increased in HT-29 cells. Conclusion: The findings show that A. ketenoglui has an anticancer potential by inducing apoptosis and arresting the cancer cell cycle and may be promising for CRC therapy. This potential of the plant is realized through the synergistic effects of its newly identified components.


Author(s):  
Maha S. Al-keilani ◽  
Dua H. Alsmadi

Objective: The main objective of this study was to evaluate the ability of sodium phenylbutyrate (NaPB) to enhance the cytotoxicity of 5-fluorouracil, oxaliplatin, and irinotecan against colorectal cancer cell lines expressing wild-type and mutant p53.Methods: The antiproliferative effect of NaPB alone or in combination with 5-fluorouracil, oxaliplatin, or irinotecan in HCT-116 and HT-29 colorectal cancer cell lines was investigated using the MTT cell proliferation assay. IC50 values were calculated using Compusyn Software 1.0 (Combosyn Inc.). Synergy values (R) were calculated using the ratio of IC50 of each primary drug alone divided by combination IC50s. For each two pairs of experiments, student’s t-test was used for analysis. In combination studies, one-way ANOVA test; Tukey post-hoc testing was performed using R 3.3.2 software. P-value<0.05 was considered significant.Results: NaPB inhibited the growth of HCT-116 and HT-29 cell lines in a dose-dependent manner (IC50s 4.7 mmol, and 10.1 mmol, respectively). HT-29 cell lines (mutant p53) were more sensitive to NaPB at low concentrations (<4 mmol). Moreover, the addition of NaPB to HCT-116 and HT-29 with 5-fluorouracil, oxaliplatin, or irinotecan synergistically induced the antiproliferative effect (R>1.6, p-value<0.05).Conclusion: NaPB enhanced the cytotoxicity of conventional chemotherapy against colorectal cancer cell lines harboring wild-type or mutant p53. Thus NaPB is a promising potential adjuvant chemotherapy in colorectal cancer.


2018 ◽  
Vol 18 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Yi-Tao Jia ◽  
Dong-hai Yang ◽  
Zhaolong Zhao ◽  
Xiao-Hui Bi ◽  
Wei-Hua Han ◽  
...  

Background: It remains unknown whether blockade of c-Met signaling and epidermal growth factor receptor signaling is effective in suppressing the growth of human colorectal cancer (CRC) cells. In this study, we investigated the effects of the c-Met inhibitor PHA-665752 alone and in combination with cetuximab on the growth of human CRC cells in vitro and in mouse xenografts. Methods: Human CRC cell lines (Caco2, HCT-116, and HT-29) and mice bearing HCT-116 xenografts were treated with cetuximab in the absence or presence of PHA-665752. Cell viability and apoptosis were examined using the MTT and TUNEL assays, respectively. Vimentin was measured by immunohistochemistry as a marker for epithelial-to-mesenchymal transition. Western blotting was used to determine signaling protein expression levels. Results: The MTT assay showed that the growth of Caco2, HCT-116, and HT-29 cells was inhibited by PHA-665752 in a dose-dependent manner, but only Caco2 cell growth was suppressed by cetuximab. Combination treatment with PHA-665752 and cetuximab inhibited the proliferation of Caco2 cells and RAS mutant CRC cell lines. However, relative to the PHA-665752-alone treatment group, HT-29 cells with a BRAF mutation showed no noticeable effect. The mean tumor volume in mice treated with cetuximab in combination with PHA-665752 was significantly smaller than that in the mice treated with only cetuximab (P = 0.033) or PHA-665752 (P < 0.01). Similarly, the expression of vimentin in the mice treated with PHA-665752 in combination with cetuximab was significantly lower than that in the mice treated with cetuximab or PHA-665752 alone (P < 0.05 in each case). TUNEL assays revealed that treatment with PHA-665752 in combination with cetuximab markedly increased CRC cell apoptosis. Western blotting analysis of signaling protein expression showed that PHA- 665752 inhibited Met phosphorylation (P < 0.05). In addition, treatment with cetuximab alone or in combination with PHA-665752 effectively inhibited EGFR phosphorylation (P < 0.05). Conclusion: Combination treatment with PHA-665752 and cetuximab suppressed in vitro and in vivo CRC cell growth more than treatment with either agent alone did.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 707
Author(s):  
Mohd Shahnawaz Khan ◽  
Alya Alomari ◽  
Shams Tabrez ◽  
Iftekhar Hassan ◽  
Rizwan Wahab ◽  
...  

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150–250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.


2015 ◽  
Vol 117 (5) ◽  
pp. 1262-1272 ◽  
Author(s):  
Nadia Mustapha ◽  
Aline Pinon ◽  
Youness Limami ◽  
Alain Simon ◽  
Kamel Ghedira ◽  
...  

2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Eman Zakaria Gomaa

Abstract Background Halophiles are an excellent source of enzymes that are not only salt stable, but also can withstand and carry out reaction efficiently under extreme conditions. l-glutaminase has attracted much attention with respect to proposed applications in several fields such as pharmaceuticals and food industries. The aim of the present study was to investigate the anticancer activity of l-glutaminase produced by halophilic bacteria. Various halophilic bacterial strains were screened for extracellular l-glutaminase production. An attempt was made to study the optimization, purification, and characterization of l-glutaminase from Bacillus sp. DV2-37. The antitumor activity of the produced enzyme was also investigated. Results The potentiality of 15 halophilic bacterial strains isolated from the marine environment that produced extracellular l-glutaminase was investigated. Bacillus sp. DV2-37 was selected as the most potent strain and optimized for enzyme production. The optimization of fermentation process revealed that the highest enzyme activity (47.12 U/ml) was observed in a medium supplemented with 1% (w/v) glucose as a carbon source, 1% (w/v) peptone as a nitrogen source, 5% (w/v) NaCl, the initial pH was 7.0, at 37 °C, using 20% (v/v) inoculum size after 96 h of incubation. The produced crude enzyme was partially purified by ammonium sulfate precipitation and dialysis. Of the various parameters tested, pH 7, 40 °C, and 5% NaCl were found to be the best for l-glutaminase activity. The enzyme also exhibited high salt and temperature stability. The antitumor effect against human breast (MCF-7), hepatocellular (HepG-2), and colon (HCT-116) carcinoma cell lines revealed that l-glutaminase produced by Bacillus sp. DV2-37 showed potent cytotoxic activity of all the tested cell lines in a dose-dependent manner with an IC50 value of 3.5, 3.4, and 3.8 µg/ml, respectively. Conclusions The present study proved that l-glutaminase produced by marine bacteria holds proper features and it has a high potential to be useful for many therapeutic applications.


2021 ◽  
Author(s):  
Amir Saber ◽  
Nasim Abedimanesh ◽  
Mohammad-Hossein Somi ◽  
Ahmad Yari Khosroushahi

Abstract Background: Colorectal cancer (CRC) is the third most common type of cancer worldwide. Fruit and vegetables have some active compounds such as flavonoids and polyphenols that protect against malignancies through their antioxidative, anti-inflammatory, anti-proliferative, neuro, and hepatoprotective properties. Red beetroot (Beta vulgaris) contains red (betacyanins) and yellow (betaxanthins) pigments known as betalains. Betanin makes up 75-95% of the total betacyanins, possessed a wide range of favorable biological effects such as chemopreventive, anticarcinogenic, anti-tumorogenic, antiangiogenic, and proapoptotic effects. Methods: Red beetroot hydro-alcoholic extract and betanin were used to treat Caco-2 and HT-29 colorectal cancer cells, as well as KDR/293 normal epithelial cells. The half-maximal inhibitory concentration (IC50) was determined by prescreening MTT tests in the range of 20 to 140 µg/ml at 24 and 48 h. The cytotoxicity and apoptosis-inducing evaluations were performed via MTT assay, DAPI staining, and FACS-flow cytometry tests using determined times and doses. Moreover, the expression level of six important genes involving in the apoptosis pathway (Bcl-2, BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) were determined using the real-time polymerase chain reaction (RT-PCR) method.Results: The IC50 doses for HT-29 and Caco-2 cell lines were determined to be about 92 μg/mL, 107 μg/mL for beetroot hydro-alcoholic extract, and 64 μg/mL, 90 μg/mL for betanin at 48 h, respectively. Our findings showed that beetroot extract and betanin significantly inhibit the growth of HT-29 and Caco-2 cell lines, time and dose-dependently, without considerable adverse effects on KDR/293 normal cells. Moreover, DAPI staining and flow cytometry results revealed significant apoptosis symptoms in treated cancerous cell lines. The expression level of pro-apoptotic genes involved in intrinsic and extrinsic apoptosis pathways (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than untreated and normal cells, whereas the anti-apoptotic gene (Bcl-2) was downregulated. Conclusion: Beetroot hydro-alcoholic extract and betanin significantly inhibited cell proliferation and induced cell apoptosis (intrinsic and extrinsic pathways) via modification of effective genes in both colorectal cancer cell lines with no significant cytotoxic effects on KDR/293 normal cells. The mechanism of the anticancer effects of red beetroot extract and betanin needs to be further studied.


2019 ◽  
Author(s):  
JIachi Ma ◽  
Shoukai Zhang ◽  
Danru Liang ◽  
Lei Li ◽  
Jun Du ◽  
...  

Abstract Background: To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods: The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results: PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 could not only significantly enhance the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but could also promote the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions: The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.


Proceedings ◽  
2017 ◽  
Vol 1 (10) ◽  
pp. 1061 ◽  
Author(s):  
Sumeyra Cetinkaya ◽  
Ilknur Cinar ◽  
H. Gul Dursun
Keyword(s):  
Hct 116 ◽  

Sign in / Sign up

Export Citation Format

Share Document