scholarly journals Construction of an immune-related gene signature to predict survival and treatment outcome in gastric cancer

2021 ◽  
Vol 104 (1) ◽  
pp. 003685042199728
Author(s):  
Shuairan Zhang ◽  
Zhi Li ◽  
Hang Dong ◽  
Peihong Wu ◽  
Yang Liu ◽  
...  

Immune cells have emerged as key regulators in the occurrence and development of multiple tumor types. However, it is unclear whether immune-related genes (IRGs) and the tumor immune microenvironment can predict prognosis for patients with gastric cancer (GC). The mRNA expression data in GC tissues ( n = 368) were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed IRGs in patients with GC were determined using a computational difference algorithm. A prognostic signature was constructed using COX regression and random survival forest (RSF) analyses. In addition, datasets related to “gemcitabine resistance” and “trastuzumab resistance” (GSE58118 and GSE77346) were obtained for GEO database, and DEGs associated with drug-resistance were screened. Then, we analyzed correlations between gene expression and cancer immune infiltrates via Tumor Immune Estimation Resource (TIMER) site. The cBioportal database was used to analyze drug-resistant gene mutation status and survival. One hundred and fifty-five differentially expressed IRGs were screened between GC and normal tissues, and a prognostic signature consisting of four IRGs (NRP1, PPP3R1, IL17RA, and FGF16) was closely related to the overall survival (OS). According to cutoff value of risk score, patients were divided into high-risk and low-risk group. Patients in the high-risk group had shorter OS compared to the low-risk group in both the training ( p < 0.0001) and testing sets ( p = 0.0021). In addition, we developed a 5-IRGs (LGR6, DKK1, TNFRSF1B, NRP1, and CXCR4) signature which may participate in drug resistance processes in GC. Survival analysis showed that patients with drug-resistant gene mutations had shorter OS ( p = 0.0459) and DFS ( p < 0.001). We constructed four survival-related IRGs and five IRGs related to drug resistance which may contribute to predict the prognosis of GC.

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

Background. An increasing number of reports have found that immune-related genes (IRGs) have a significant impact on the prognosis of a variety of cancers, but the prognostic value of IRGs in gastric cancer (GC) has not been fully elucidated. Methods. Univariate Cox regression analysis was adopted for the identification of prognostic IRGs in three independent cohorts (GSE62254, n = 300 ; GSE15459, n = 191 ; and GSE26901, n = 109 ). After obtaining the intersecting prognostic genes, the three independent cohorts were merged into a training cohort ( n = 600 ) to establish a prognostic model. The risk score was determined using multivariate Cox and LASSO regression analyses. Patients were classified into low-risk and high-risk groups according to the median risk score. The risk score performance was validated externally in the three independent cohorts (GSE26253, n = 432 ; GSE84437, n = 431 ; and TCGA, n = 336 ). Immune cell infiltration (ICI) was quantified by the CIBERSORT method. Results. A risk score comprising nine genes showed high accuracy for the prediction of the overall survival (OS) of patients with GC in the training cohort ( AUC > 0.7 ). The risk of death was found to have a positive correlation with the risk score. The univariate and multivariate Cox regression analyses revealed that the risk score was an independent indicator of the prognosis of patients with GC ( p < 0.001 ). External validation confirmed the universal applicability of the risk score. The low-risk group presented a lower infiltration level of M2 macrophages than the high-risk group ( p < 0.001 ), and the prognosis of patients with GC with a higher infiltration level of M2 macrophages was poor ( p = 0.011 ). According to clinical correlation analysis, compared with patients with the diffuse and mixed type of GC, those with the Lauren classification intestinal GC type had a significantly lower risk score ( p = 0.00085 ). The patients’ risk score increased with the progression of the clinicopathological stage. Conclusion. In this study, we constructed and validated a robust prognostic signature for GC, which may help improve the prognostic assessment system and treatment strategy for GC.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yankai Zhang ◽  
Yichao Yan ◽  
Ning Ning ◽  
Zhanlong Shen ◽  
Yingjiang Ye

Abstract Background Aging is the major risk factor for most human cancers. We aim to develop and validate a reliable aging-related gene pair signature (ARGPs) to predict the prognosis of gastric cancer (GC) patients. Methods The mRNA expression data and clinical information were obtained from two public databases, The Cancer Genome Atlas (TCGA) dataset, and Gene Expression Omnibus (GEO) dataset, respectively. The best prognostic signature was established using Cox regression analysis (univariate and least absolute shrinkage and selection operator). The optimal cut-off value to distinguish between high- and low-risk patients was found by time-dependent receiver operating characteristic (ROC). The prognostic ability of the ARGPS was evaluated by a log‐rank test and a Cox proportional hazards regression model. Results The 24 ARGPs were constructed for GC prognosis. Using the optimal cut-off value − 0.270, all patients were stratified into high risk and low risk. In both TCGA and GEO cohorts, the results of Kaplan–Meier analysis showed that the high-risk group has a poor prognosis (P < 0.001, P = 0.002, respectively). Then, we conducted a subgroup analysis of age, gender, grade and stage, and reached the same conclusion. After adjusting for a variety of clinical and pathological factors, the results of multivariate COX regression analysis showed that the ARGPs is still an independent prognostic factor of OS (HR, 4.919; 95% CI 3.345–7.235; P < 0.001). In comparing with previous signature, the novel signature was superior, with an area under the receiver operating characteristic curve (AUC) value of 0.845 vs. 0.684 vs. 0.695. The results of immune infiltration analysis showed that the abundance of T cells follicular helper was significantly higher in the low-risk group, while the abundance of monocytes was the opposite. Finally, we identified and incorporated independent prognostic factors and developed a superior nomogram to predict the prognosis of GC patients. Conclusion Our study has developed a robust prognostic signature that can accurately predict the prognostic outcome of GC patients.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8128 ◽  
Author(s):  
Cheng Yue ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dakui Luo ◽  
Zezhi Shan ◽  
Qi Liu ◽  
Sanjun Cai ◽  
Qingguo Li ◽  
...  

A metabolic disorder is considered one of the hallmarks of cancer. Multiple differentially expressed metabolic genes have been identified in colon cancer (CC), and their biological functions and prognostic values have been well explored. The purpose of the present study was to establish a metabolic signature to optimize the prognostic prediction in CC. The related data were downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) database, and Gene Expression Omnibus (GEO) combined with GSE39582 set, GSE17538 set, GSE33113 set, and GSE37892 set. The differentially expressed metabolic genes were selected for univariate Cox regression and lasso Cox regression analysis using TCGA and GTEx datasets. Finally, a seventeen-gene metabolic signature was developed to divide patients into a high-risk group and a low-risk group. Patients in the high-risk group presented poorer prognosis compared to the low-risk group in both TCGA and GEO datasets. Moreover, gene set enrichment analyses demonstrated multiple significantly enriched metabolism-related pathways. To sum up, our study described a novel seventeen-gene metabolic signature for prognostic prediction of colon cancer.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yinglian Pan ◽  
Li Ping Jia ◽  
Yuzhu Liu ◽  
Yiyu Han ◽  
Qian Li ◽  
...  

Abstract Background In this study we aimed to identify a prognostic signature in BRCA1/2 mutations to predict disease progression and the efficiency of chemotherapy ovarian cancer (OV), the second most common cause of death from gynecologic cancer in women worldwide. Methods Univariate Cox proportional-hazards and multivariate Cox regression analyses were used to identifying prognostic factors from data obtained from The Cancer Genome Atlas (TCGA) database. The area under the curve of the receiver operating characteristic curve was assessed, and the sensitivity and specificity of the prediction model were determined. Results A signature consisting of two long noncoding RNAs(lncRNAs), Z98885.2 and AC011601.1, was selected as the basis for classifying patients into high and low-risk groups (median survival: 7.2 years vs. 2.3 years). The three-year overall survival (OS) rates for the high- and low-risk group were approximately 38 and 100%, respectively. Chemotherapy treatment survival rates indicated that the high-risk group had significantly lower OS rates with adjuvant chemotherapy than the low-risk group. The one-, three-, and five-year OS were 100, 40, and 15% respectively in the high-risk group. The survival rate of the high-risk group declined rapidly after 2 years of OV chemotherapy treatment. Multivariate Cox regression associated with other traditional clinical factors showed that the 2-lncRNA model could be used as an independent OV prognostic factor. Analyses of data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) indicated that these signatures are pivotal to cancer development. Conclusion In conclusion, Z98885.2 and AC011601.1 comprise a novel prognostic signature for OV patients with BRCA1/2 mutations, and can be used to predict prognosis and the efficiency of chemotherapy.


2020 ◽  
Author(s):  
Lei Wu ◽  
Guojun Yue ◽  
Wen Quan ◽  
Qiong Luo ◽  
Dongxu Peng ◽  
...  

Abstract Background: Autophagy is a highly conserved homeostatic process in the human body that is responsible for the elimination of aggregated proteins and damaged organelles. Several autophagy-related genes (ARGs) contribute to the process of tumorigenesis and metastasis of prostate cancer (PCa). Also, miRNAs have been proven to modulate autophagy by targeting some ARGs. However, their potential role in PCa still remains unclear.Methods: An univariate Cox proportional regression model was used to identify 17 ARGs associated with the overall survival (OS) of PCa. Then, a multivariate Cox proportional regression model was used to construct a 6 autophagy-related prognostic genes signature. Patients were divided into low-risk group and high-risk group using the median risk score as a cutoff value. High-risk patients had shorter OS than low-risk patients. Furthermore, the signature was validated by ROC curves. Regarding mRNA and miRNA, 12 differentially expressed miRNAs (DEMs) and 1073 differentially expressed genes (DEGs) were detected via the GEO database. We found that miR-205, one of the DEMs, was negatively regulated the expression of ARG (NKX2-3). Based on STRING analysis results, we found that the NKX2-3 was moderately related to the part of genes among the 6 autophagy-related genes prognostic signature. Further, NKX 2-3 was significantly correlated with OS and some clinical parameters of PCa by cBioProtal. By gene set enrichment analysis (GSEA). Lastly, we demonstrated that the association between NKX2-3 and tumor mutation burden (TMB) and PDCD1 (programmed cell death 1) of PCa.Results: We identified that the six ARGs expression patterns are independent predictors of OS in PCa patients. Furthermore, our results suggest that ARGs and miRNAs are inter-related. MiR-205 was negatively regulated the expression of ARG (NKX2-3). Further analysis demonstrated that NKX2-3 may be a potential biomarker for predicting the efficacy of anti-PD-1 therapy in PCa.Conclusions: The current study may offer a novel autophagy-related prognostic signature and may identify a promising miRNA-ARG pathway for predicting the efficacy of anti-PD-1 therapy in PCa.


2021 ◽  
Author(s):  
Fang Wen ◽  
Xiaoxue Chen ◽  
Wenjie Huang ◽  
Shuai Ruan ◽  
Suping Gu ◽  
...  

Abstract Background: The diagnosis rate and mortality of gastric cancer (GC) are among the highest in the global, so it is of great significance to predict the survival time of GC patients. Ferroptosis and iron-metabolism make a critical impact on tumor development and are closely linked to the treatment of cancer and the prognosis of patients. However, the predictive value of the genes involved in ferroptosis and iron-metabolism in GC and their effects on immune microenvironment remain to be further clarified.Methods: In this study, the RNA sequence information and general clinical indicators of GC patients were acquired from the public databases. We first systematically screen out 134 DEGs and 13 PRGs related to ferroptosis and iron-metabolism. Then, we identified six PRDEGs (GLS2, MTF1, SLC1A5, SP1, NOX4, and ZFP36) based on the LASSO-penalized Cox regression analysis. The 6-gene prognostic risk model was established in the TCGA cohort and the GC patients were separated into the high- and the low-risk groups through the risk score median value. GEO cohort was used for verification. The expression of PRDEGs was verified by quantitative QPCR.Results: Our study demonstrated that patients in the low-risk group had a higher survival probability compared with those in high-risk group. In addition, univariate and multivariate Cox regression analyses confirmed that the risk score was an independent prediction parameter. The ROC curve analysis and nomogram manifested that the risk model had the high predictive ability and was more sensitive than general clinical features. Furthermore, compared with the high-risk group, the low-risk group had higher TMB and a longer 5-year survival period. In the immune microenvironment of GC, there were also differences in immune function and highly infiltrated immune cells between the two risk groups.Conclusions: The prognostic risk model based on the six genes associated with ferroptosis and iron-metabolism has a good performance for predicting the prognosis of patients with GC. The treatment of cancer by inducing tumor ferroptosis or mediating tumor iron-metabolism, especially combined with immunotherapy, provides a new possibility for individualized treatment of GC patients.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2384
Author(s):  
Meng-Che Hsieh ◽  
Shih-Ho Wang ◽  
Ching-Ting Wei ◽  
Chung-Yen Chen ◽  
Yen-Yang Chen ◽  
...  

Background: Fluoropyrimidine- and platinum-based doublet regimen is the standard treatment of adjuvant chemotherapy (AC) for gastric cancer (GC). Our study aims to compare S1 with doublet regimens as AC in patients with advanced GC after radical surgery with D2 dissection. Methods: Patients who were diagnosed with GC and underwent a curative surgery with D2 dissection followed by AC were enrolled into our study. A propensity score matching analysis was performed to reduce the selection bias. Kaplan–Meier curves were estimated for recurrence-free survival (RFS) and overall survival (OS). Cox regression models were conducted for survival. Results: After propensity sore matching, 64 patients with S1 and 64 patients with doublet regimens were identified. The median RFS (p = 0.355) and OS (p = 0.309) were both insignificant between S1 and ST. Cox regression analysis demonstrated that pathologic stage and lymph node ratio (LNR) were independently correlated with survival. Patients were then stratified into low risk and high risk groups. The median RFS (p < 0.001) and OS (p < 0.001) had significant differences between low risk and high risk. In the high-risk group, doublet regimens were strongly associated with survival (p = 0.020) as compared with S1. While in the low-risk group, doublet regimen and S1 did not have statistically different survival benefits. Conclusions: Our study demonstrated that doublet regimens are superior to S1 in high-risk groups, and that survival outcomes are similar between doublet regimens and S1 in low-risk groups. Our prognostic model might have clinical implications for AC.


Author(s):  
Shuang Dai ◽  
Tao Liu ◽  
Xiao-Qin Liu ◽  
Xiao-Ying Li ◽  
Ke Xu ◽  
...  

Background: Tumor immune microenvironment plays a vital role in tumorigenesis and progression of gastric cancer (GC), but potent immune biomarkers for predicting the prognosis have not been identified yet.Methods: At first, RNA-sequencing and clinical data from The Cancer Genome Atlas (TCGA) were mined to identify an immune-risk signature using least absolute shrinkage and selection operator (LASSO) regression and multivariate stepwise Cox regression analyses. Furthermore, the risk score of each sample was calculated, and GC patients were divided into high-risk group and low-risk group based on their risk scores. Subsequently, the performance of this signature, including the correlation with overall survival (OS), clinical features, immune cell infiltration, and immune response, has been tested in GC data from TCGA database and Gene Expression Omnibus (GSE84437), respectively.Results: An immune signature composed of four genes (MAGED1, ACKR3, FZD2, and CTLA4) was constructed. The single sample gene set enrichment analysis (ssGSEA) indicated that activated CD4+/CD8+ T cell, activated dendritic cell, and effector memory CD8+ T cell prominently increased in the low-risk group, showing relatively high immune scores and low stromal scores. Further GSEA analysis indicated that TGF-β, Ras, and Rap1 pathways were activated in the high-risk group, while Th17/Th1/Th2 differentiation, T cell receptor and PD-1/PD-L1 checkpoint pathways were activated in the low-risk group. Low-risk patients presented higher tumor mutation burden (TMB) and expression of HLA-related genes. The immune-associated signature showed an excellent predictive ability for 2-, 3-, and 5-year OS in GC.Conclusion: The immune-related prognosis model contributes to predicting the prognosis of GC patients and providing valuable information about their response to immunotherapy using integrated bioinformatics methods.


Author(s):  
Yue Li ◽  
Ruoyi Shen ◽  
Anqi Wang ◽  
Jian Zhao ◽  
Jieqi Zhou ◽  
...  

BackgroundLung adenocarcinoma (LUAD) originates mainly from the mucous epithelium and glandular epithelium of the bronchi. It is the most common pathologic subtype of non-small cell lung cancer (NSCLC). At present, there is still a lack of clear criteria to predict the efficacy of immunotherapy. The 5-year survival rate for LUAD patients remains low.MethodsAll data were downloaded from The Cancer Genome Atlas (TCGA) database. We used Gene Set Enrichment Analysis (GSEA) database to obtain immune-related mRNAs. Immune-related lncRNAs were acquired by using the correlation test of the immune-related genes with R version 3.6.3 (Pearson correlation coefficient cor = 0.5, P &lt; 0.05). The TCGA-LUAD dataset was divided into the testing set and the training set randomly. Based on the training set to perform univariate and multivariate Cox regression analyses, we screened prognostic immune-related lncRNAs and given a risk score to each sample. Samples were divided into the high-risk group and the low-risk group according to the median risk score. By the combination of Kaplan–Meier (KM) survival curve, the receiver operating characteristic (ROC) (AUC) curve, the independent risk factor analysis, and the clinical data of the samples, we assessed the accuracy of the risk model. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the differentially expressed mRNAs between the high-risk group and the low-risk group. The differentially expressed genes related to immune response between two risk groups were analyzed to evaluate the role of the model in predicting the efficacy and effects of immunotherapy. In order to explain the internal mechanism of the risk model in predicting the efficacy of immunotherapy, we analyzed the differentially expressed genes related to epithelial-mesenchymal transition (EMT) between two risk groups. We extracted RNA from normal bronchial epithelial cell and LUAD cells and verified the expression level of lncRNAs in the risk model by a quantitative real-time polymerase chain reaction (qRT-PCR) test. We compared our risk model with other published prognostic signatures with data from an independent cohort. We transfected LUAD cell with siRNA-LINC0253. Western blot analysis was performed to observed change of EMT-related marker in protein level.ResultsThrough univariate Cox regression analysis, 24 immune-related lncRNAs were found to be strongly associated with the survival of the TCGA-LUAD dataset. Utilizing multivariate Cox regression analysis, 10 lncRNAs were selected to establish the risk model. The K-M survival curves and the ROC (AUC) curves proved that the risk model has a fine predictive effect. The GO enrichment analysis indicated that the effect of the differentially expressed genes between high-risk and low-risk groups is mainly involved in immune response and intercellular interaction. The KEGG enrichment analysis indicated that the differentially expressed genes between high-risk and low-risk groups are mainly involved in endocytosis and the MAPK signaling pathway. The expression of genes related to the efficacy of immunotherapy was significantly different between the two groups. A qRT-PCR test verified the expression level of lncRNAs in LUAD cells in the risk model. The AUC of ROC of 5 years in the independent validation dataset showed that this model had superior accuracy. Western blot analysis verified the change of EMT-related marker in protein level.ConclusionThe immune lncRNA risk model established by us could better predict the prognosis of patients with LUAD.


Sign in / Sign up

Export Citation Format

Share Document