scholarly journals An iterative observer approach to harmonic estimation for multiple measurements in power distribution systems

2015 ◽  
Vol 39 (5) ◽  
pp. 599-610 ◽  
Author(s):  
Awajiokiche Ujile ◽  
Zhengtao Ding ◽  
Haiyu Li

In the past decade, there has been a significant increase in the use of power electronic components in the design of household and industrial equipment. The use of power electronic based renewable energy resources, electric vehicles and other residential nonlinear loads may result in significant increases in injection levels of harmonics across a power system. Hence, it is important for utility companies to ascertain the exact harmonic levels present in terms of the amplitude and phase of each harmonic order. This paper provides a mathematical basis for distribution system state-space equations to formulate an iterative observer, which can simultaneously estimate harmonics present in a number of measurements taken from the power system. The method not only improves the computation time and provides real-time data for harmonic monitoring, but also performs wide area harmonic estimation for harmonic observability. Simulations and comparisons are provided to illustrate the performance of the proposed method against that obtained using a Kalman filter and fast Fourier transform (FFT). A number of scenarios such as measurement noise and change in amplitude of harmonic injections are simulated to verify the accuracy of the proposed approach and the results are included.

2019 ◽  
Vol 217 ◽  
pp. 01020 ◽  
Author(s):  
Margarita Chulyukova ◽  
Nikolai Voropai

The paper considers the possibilities of increasing the flexibility of power distribution systems by real-time load management. The principles of the implementation of special automatic systems for this purpose are proposed. These systems enable some loads of specific consumers of the power distribution system switched to islanded operation to “shift” from the daily maximum to the minimum, which makes some generators available to connect certain essential consumers disconnected earlier by under-frequency load shedding system to the power system. The approach under consideration is illustrated by a power system with distributed generation.


Author(s):  
Reza Tajik

Nowadays, the utilization of renewable energy resources in distribution systems (DSs) has been rapidly increased. Since distribution generation (DG) use renewable resources (i.e., biomass, wind and solar) are emerging as proper solutions for electricity generation. Regarding the tremendous deployment of DG, common distribution networks are undergoing a transition to DSs, and the common planning methods have become traditional in the high penetration level. Indeed, in conformity with the voltage violation challenge of these resources, this problem must be dealt with too. So, due to the high penetration of DG resources and nonlinear nature of most industrial loads, the planning of DG installation has become an important issue in power systems. The goal of this paper is to determine the planning of DG in distribution systems through smart grid to minimize losses and control grid factors. In this regard, the present work intending to propose a suitable method for the planning of DSs, the key properties of DS planning problem are evaluated from the various aspects, such as the allocation of DGs, and planning, and high-level uncertainties. Also depending on these analyses, this universal literature review addressed the updated study associated with DS planning. In this work, an operational design has been prepared for a higher performance of the power distribution system in the presence of DG. Artificial neural network (ANN) has been used as a method for voltage monitoring and generation output optimization. The findings of the study show that the proposed method can be utilized as a technique to improve the process of the distribution system under various penetration levels and in the presence of DG. Also, the findings revealed that the optimal use of ANN method leads to more controllable and apparent DS.


2014 ◽  
Vol 573 ◽  
pp. 346-351
Author(s):  
G.S. Satheesh Kumar ◽  
Chinnadurai Nagarajan ◽  
M. Lizzy Nesa Bagyam

A Recent concept of distribution infrastructure plays a vital role in the efficient utilization of energy. To avoid global warming and greenhouse gas emission, carbon based power plant should be replaced with distributed renewable energy (DRE) such as wind, solar etc. Renewable energy resources can be integrated to grid by intelligent electronic devices (IED). This paper deals with the novel automation architecture that supports power distribution systems to avoid power blackout and also it briefs the major requirement of the smart grid distribution system needed for a competitive world. International standard IEC 61850 and IEC 61499 provides a solution for substation automation through intelligent logical nodes (ILNs) which enhances interoperability and configurability.Later an open source platform is used for enhancing the communication that automatically generates the data model and communication nodes for intelligent electronic devices.However for future requirements in smart grid, the addition of new functions as well as the adaptation of function for IEDs is necessary. A concept of reconfigurable software architecture is introduced for integrating distributed and renewable energy resources. Such interfaces and services provide adaptation of the functional structure and contribute efficient Smart Grid system. This survey summarizes the communication infrastructure of smart energy system.


2022 ◽  
Vol 10 (1) ◽  
pp. 065-074
Author(s):  
Elijah Adebayo Olajuyin ◽  
Eniola Olubakinde

Power system especially the distribution system which is the closest to the consumer is very fundamental and important to a nation’s economy development and that was the reason this study titled “Evaluation of reliability of power system distribution components, a case study of Sagamu Substation, Ogun State” was carried out in response to the yawning of the consumer for reliable and stable power supply. It is indispensable to find means of shaping which component failure contributes most to the unavailability, outage or interruption of the distribution system, and how this unavailability essentially affects the customers. A year power outages data that caused as a result of failure on each of these components such as Switch gears, Supply lines (11Kv),Busbar, circuit breakers, Fuses, Switches, Outgoings feeders, Over current relays, Earth fault relays, Surge arresters, transformers e.t.c. were collected from Ibadan Electricity Distribution company (IBDEC), Sagamu Substation Zone, Ogun State and were typified in Table 1-11.The failure rate (f/yr) (λ) of transformer, switch gear, supply line (incoming),bus bars, circuit breakers, fuses, switches, outgoing feeder, over current relay, earth fault relay and surge arrester were evaluated as follows 0.0059, 0.0044, 0.0011, 0.6667, 0.0007, 0.0082, 0.0000, 0.0039, 0.0003, 0.0001 and 0.0000 respectively and others such as average outages time (hours) ,outages time hours and other basic reliability indices were calculated and illustrated in Table 12. Some of these failures were also represented in bar chart. This method relates reliability theory with the experience gained from statistics and practical knowledge of components failures and maintenance. The findings from this work revealed that fuses had the highest failure followed by transformers and the least was surge arresters and it was also discovered that the outages time was reduced during the December period. This approach can be applied to rural and urban distribution systems. This submission made reliability theory a powerful tool to assist distribution Engineers in solving difficult and complicated problems.


2021 ◽  
Author(s):  
Bruno M. Laurindo ◽  
Felipe Marins ◽  
Bruno Wanderley França ◽  
Marcio Zamboti Fortes ◽  
Mauricio Aredes

In Brazil, technical energy losses in power distribution systems are determined by power flow studies considering medium and low voltage systems, according to ANEEL recommendations, presented in PRODIST Module 7. These technical losses occur due to physical phenomena and are intrinsically associated with the energy distribution process. However, standards currently do not consider energy losses from harmonic components generated by nonlinear loads, which represent almost all the loads present in electrical systems worldwide. Thus, this paper aims to analyze the operation of a low voltage transformer under harmonic current conditions and to evaluate not only the operation temperature of the equipment, but also to verify the energy losses in it. This test is performed on a laboratory platform and the results are experimental using an adjustable three-phase source and a 3kVA three-phase transformer.


In conventional power system the transmission and distribution (T&D) losses is a major concern. Renewable energy resources placed at load centers can reduce the T&D losses. For power system planners and researchers it is essential to find the optimal size and position of renewable energy resources to be place in distribution networks. Renewable energy source such as solar energy is abundantly present in the environment. With the help of solar photovoltaic (SPV) system solar energy can be converted to electrical energy. Placement of SPV in distribution system is an interesting area for researchers and planners, the random placement of SPV in distribution system leads to more power losses and poor voltage profile. In this article mathematical modelling of time varying nature of SPV and variable load has been explained and particle swarm optimization (PSO) method is proposed to find the best size and location of the SPV system. This method is tested on IEEE 33 bus system. For the validation of result existing technique based on analytical expression is selected. It is found that PSO gives better result in compare to analytical method.


Author(s):  
Gunjan Varshney ◽  
Durg S. Chauhan ◽  
Madhukar P. Dave ◽  
Nitin

Background: In modern electrical power distribution systems, Power Quality has become an important concern due to the escalating use of automatic, microprocessor and microcontroller based end user applications. Methods: In this paper, power quality improvement has done using Photovoltaic based Distribution Static Compensator (PV-DSTATCOM). Complete simulation modelling and control of Photovoltaic based Distribution Static Compensator have been provided in the presented paper. In this configuration, DSTATCOM is fed by solar photovoltaic array and PV module is also helpful to maintain the DC link voltage. The switching of PV-STATCOM is controlled by Unit template based control theory. Results: The performance of PV-DSTATCOM has been evaluated for Unity Power Factor (UPF) and AC Voltage Control (ACVC) modes. Here, for studying the power quality issues three-phase distribution system is considered and results have been verified through simulation based on MATLAB software. Conclusion: Different power quality issues and their improvement are studied and presented here for harmonic reduction, DC voltage regulation and power factor correction.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 775
Author(s):  
Sheng-Yu Tseng ◽  
Jun-Hao Fan

Due to the advantages of power supply systems using the DC distribution method, such as a conversion efficiency increase of about 5–10%, a cost reduction of about 15–20%, etc., AC power distribution systems will be replaced by DC power distribution systems in the future. This paper adopts different converters to generate DC distribution system: DC/DC converter with PV arrays, power factor correction with utility line and full-bridge converter with multiple input sources. With this approach, the proposed full-bridge converter with soft-switching features for generating a desired voltage level in order to transfer energy to the proposed DC distribution system. In addition, the proposed soft-switching full-bridge converter is used to generate the DC voltage and is applied to balance power between the PV arrays and the utility line. Due to soft-switching features, the proposed full-bridge converter can be operated with zero-voltage switching (ZVS) at the turn-on transition to increase conversion efficiency. Finally, a prototype of the proposed full-bridge converter under an input voltage of DC 48 V, an output voltage of 24 V, a maximum output current of 21 A and a maximum output power of 500 W was implemented to prove its feasibility. From experimental results, it can be found that its maximum conversion efficiency is 92% under 50% of full-load conditions. It was shown to be suitable for DC distribution applications.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 141-149 ◽  
Author(s):  
Andres Felipe Panesso-Hernández ◽  
Juan Mora-Flórez ◽  
Sandra Pérez-Londoño

<p>The impedance-based approaches for fault location in power distribution systems determine a faulted line section. Next, these require of the estimation of the voltages and currents at one or both section line ends to exactly determine the fault location. It is a challenge because in most of the power distribution systems, measurements are only available at the main substation.  This document presents a modeling proposal of the power distribution system and an easy implementation method to estimate the voltages and currents at the faulted line section, using the measurements at the main substation, the line, load, transformer parameters and other serial and shunt connected devices and the power system topology. The approach here proposed is tested using a fault locator based on superimposed components, where the distance estimation error is lower than 1.5% in all of the cases. </p>


Sign in / Sign up

Export Citation Format

Share Document