From information- to knowledge-management: the role of rule induction and neural net machine learning techniques in knowledge generation

1989 ◽  
Vol 15 (4-5) ◽  
pp. 299-304 ◽  
Author(s):  
Nigel Ford

Developments in artificial intelligence mean that it is now increasingly possible to store not only information but also knowledge as an exploitable resource. Insofar as he or she is concerned with creating, organizing and monitoring knowledge resources to support effective decision making within an organization, the information manager is developing the role of knowledge manager. As well as its organization and dissemina tion, the generation of storable knowledge is very much on the agenda of the knowledge manager. The extent to which com puters can help in the process of knowledge generation is central to his or her concerns. Machine learning techniques have been developed which are capable of giving us an increasing amount of help in this process. The contributions of rule induction and artificial neural net systems are discussed. It is likely that such tech niques will prove to be useful tools both for the information/knowledge manager requiring practical working systems enabling the cost-effective exploitation of knowledge resources, and for the information/knowledge scientist requir ing advances in our more fundamental theoretical knowledge of the nature of information and ways of processing it.

Author(s):  
Deepti Rani ◽  
Anju Sangwan ◽  
Anupma Sangwan ◽  
Tajinder Singh

With the enormous growth of sensor networks, information seeking from such networks has become an invaluable source of knowledge for various organizations to enhance the comprehension of people interests. Not only wireless sensor networks (WSNs) but its various classes also remain the hot topics of research. In this chapter, the primary focus is to understand the concept of sensor network in underwater scenario. Various mechanisms are used to recognize the activities underwater using sensor which examines the real-time events. With these features, a few challenges are also associated with sensor networks, which are addressed here. Machine learning (ML) techniques are the perfect key of success to resolve such issues due to their feasibility and adaption in complex problem environment. Therefore, various ML techniques have been explained to enhance the operational performance of WSNs, especially in underwater WSNs (UWSNs). The main objective of this chapter is to understand the concepts of UWSNs and role of ML to address the performance issues of UWSNs.


2020 ◽  
pp. 101806
Author(s):  
Omid Khalaj ◽  
Moslem Ghobadi ◽  
Alireza Zarezadeh ◽  
Ehsan Saebnoori ◽  
Hana Jirková ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shaker El-Sappagh ◽  
Tamer Abuhmed ◽  
Bader Alouffi ◽  
Radhya Sahal ◽  
Naglaa Abdelhade ◽  
...  

Early detection of Alzheimer’s disease (AD) progression is crucial for proper disease management. Most studies concentrate on neuroimaging data analysis of baseline visits only. They ignore the fact that AD is a chronic disease and patient’s data are naturally longitudinal. In addition, there are no studies that examine the effect of dementia medicines on the behavior of the disease. In this paper, we propose a machine learning-based architecture for early progression detection of AD based on multimodal data of AD drugs and cognitive scores data. We compare the performance of five popular machine learning techniques including support vector machine, random forest, logistic regression, decision tree, and K-nearest neighbor to predict AD progression after 2.5 years. Extensive experiments are performed using an ADNI dataset of 1036 subjects. The cross-validation performance of most algorithms has been improved by fusing the drugs and cognitive scores data. The results indicate the important role of patient’s taken drugs on the progression of AD disease.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1421
Author(s):  
Haechan Park ◽  
Nakhoon Baek

With the growth of artificial intelligence and deep learning technology, we have many active research works to apply the related techniques in various fields. To test and apply the latest machine learning techniques in gaming, it will be very useful to have a light-weight game engine for quick prototyping. Our game engine is implemented in a cost-effective way, in comparison to well-known commercial proprietary game engines, by utilizing open source products. Due to its simple internal architecture, our game engine is especially beneficial for modifying and reviewing the new functions through quick and repetitive tests. In addition, the game engine has a DNN (deep neural network) module, with which the proposed game engine can apply deep learning techniques to the game features, through applying deep learning algorithms in real-time. Our DNN module uses a simple C++ function interface, rather than additional programming languages and/or scripts. This simplicity enables us to apply machine learning techniques more efficiently and casually to the game applications. We also found some technical issues during our development with open sources. These issues mostly occurred while integrating various open source products into a single game engine. We present details of these technical issues and our solutions.


Author(s):  
Anshul, Et. al.

COVID-19 virus belongs to the severe acute respiratory syndrome (SARS) family raised a situation of health emergency in almost all the countries of the world. Numerous machine learning and deep learning based techniques are used to diagnose COVID positive patients using different image modalities like CT SCAN, X-RAY, or CBX, etc. This paper provides the works done in COVID-19 diagnosis, the role of ML and DL based methods to solve this problem, and presents limitations with respect to COVID-19 diagnosis.


2020 ◽  
Vol 36 (15) ◽  
pp. 4263-4268
Author(s):  
Zijie Shen ◽  
Quan Zou

Abstract Motivation Methylation and transcription factors (TFs) are part of the mechanisms regulating gene expression. However, the numerous mechanisms regulating the interactions between methylation and TFs remain unknown. We employ machine-learning techniques to discover the characteristics of TFs that bind to methylation sites. Results The classical machine-learning analysis process focuses on improving the performance of the analysis method. Conversely, we focus on the functional properties of the TF sequences. We obtain the principal properties of TFs, namely, the basic polar and hydrophobic Ile amino acids affecting the interaction between TFs and methylated DNA. The recall of the positive instances is 0.878 when their basic polar value is >0.1743. Both basic polar and hydrophobic Ile amino acids distinguish 74% of TFs bound to methylation sites. Therefore, we infer that basic polar amino acids affect the interactions of TFs with methylation sites. Based on our results, the role of the hydrophobic Ile residue is consistent with that described in previous studies, and the basic polar amino acids may also be a key factor modulating the interactions between TFs and methylation. Supplementary information Supplementary data are available at Bioinformatics online.


1997 ◽  
Vol 95 (1) ◽  
pp. 95-111 ◽  
Author(s):  
Sašo Džeroski ◽  
Jasna Grbović ◽  
William J. Walley ◽  
Boris Kompare

Sign in / Sign up

Export Citation Format

Share Document