Effects of Antibiotics and Organic Solvents on the In Vitro Cytotoxicity of Other Chemicals

1984 ◽  
Vol 12 (4) ◽  
pp. 203-213
Author(s):  
Richard Clothier ◽  
Thompson Robinson ◽  
Sally Greengrass ◽  
Vivien Heyes ◽  
Julie Ratcliffe ◽  
...  

Since the methods used to maintain cells in vitro can profoundly influence their survival, stability and growth, their effects on responses to potentially toxic chemicals must also be considered. In addition, many xenobiotics are insoluble in aqueous media, and the organic solvents used in presenting them to the cells used in in vitro cytotoxicity tests could themselves be toxic and/or could modify the toxicities of test chemicals. Experiments on an antifungal agent, fungizone, and two aminoglycoside antibacterial agents, gentamicin and kanamycin, showed that BCL-D1 cells (a finite-lived cell line) were more sensitive than V79 cells (a continuous cell line), but increase in total protein during a 3-day culture period was not seriously inhibited when the antibiotics were present at the concentrations recommended for routine use in culture media. Experiments on five organic solvents indicated that DMSO had a significant effect on cell growth, but provided that comparisons were made with the relevant solvent controls, the toxicities of two xenobiotics (dinitrophenol and cycloheximide) were not significantly altered when they were dissolved in organic solvents before being added to V79 cell cultures.

2021 ◽  
Vol 11 (10) ◽  
pp. 4351
Author(s):  
Simona Braccini ◽  
Giacomo Provinciali ◽  
Lorenzo Biancalana ◽  
Guido Pampaloni ◽  
Federica Chiellini ◽  
...  

Diiron bis-cyclopentadienyl bis-carbonyl cationic complexes with a bridging vinyliminium ligand, [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C3(R′)C2HC1NMe(R″)}]CF3SO3 (R = Xyl = 2,6-C6H3Me2, R′ = Ph, R″ = H, 2a; R = Xyl, R′ = R″ = Me, 2b; R = R′ = Me, R″ = H, 2c; R = Me, R′ = 2-naphthyl, R″ = H, 2d; R = Me, R′ = R″ = Ph, 2e), are easily available from commercial chemicals, robust in aqueous media and exert a variable in vitro cytotoxicity against cancer cell lines depending on the nature of the substituents on the vinyliminium ligand. The anticancer activity is, at least in part, associated to fragmentation reactions, leading to iron oxidation and active neutral and well-defined monoiron species. We report an innovative synthetic procedure for the preparation of 2a,c,d, and a facile method to access the monoiron derivative of 2a, i.e., [FeCp(CO){C1(NMeXyl)C2HC3(Ph)C(O)}] (3a). According to IC50 analyses at different times of incubation of the complexes, 3a is significantly faster in inhibiting cell viability compared to its diiron precursor 2a. The neutral complexes [Fe2Cp2(CO)(μ-CO){μ-k1N:k1C:k1C-C3(R′)C2(Se)C1(NMe2)C4(CO2Y)C5(CO2Y)}] (R′ = Y = Me, 4a; R′ = Pr, Y = tBu, 4b; R′ = Y = Et, 4c) are obtained via the two-step modification of the vinyliminium moiety and comprise a bridging selenophene-decorated alkylidene ligand. The antiproliferative activity exhibited by 4a-c is moderate but comparable on the ovarian cancer cell line A2780 and the corresponding cisplatin resistant cell line, A2780cisR. Complexes 4a-c in aqueous solutions undergo progressive release of the alkylidene ligand as a functionalized selenophene, this process being slower in cell culture medium. Since the released selenophenes SeC1{C(O)R′}C2(NMe2)C3(CO2Y)C4(CO2Y) (R′ = Y = Me, 5a; R′ = Pr, Y = tBu, 5b) are substantially not cytotoxic, it is presumable that the activity of 4a-c is largely ascribable to the {Fe2Cp2(CO)2} scaffold.


2019 ◽  
Vol 19 (13) ◽  
pp. 1075-1091 ◽  
Author(s):  
Karla Mirella Roque Marques ◽  
Maria Rodrigues do Desterro ◽  
Sandrine Maria de Arruda ◽  
Luiz Nascimento de Araújo Neto ◽  
Maria do Carmo Alves de Lima ◽  
...  

Background: Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. Objective: Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. Methods: Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). Results: Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. Conclusion: Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.


2020 ◽  
Vol 20 (6) ◽  
pp. 700-708
Author(s):  
Mitra Korani ◽  
Sara Nikoofal-Sahlabadi ◽  
Amin R. Nikpoor ◽  
Solmaz Ghaffari ◽  
Hossein Attar ◽  
...  

Aims: Here, three liposomal formulations of DPPC/DPPG/Chol/DSPE-mPEG2000 (F1), DPPC/DPPG/Chol (F2) and HSPC/DPPG/Chol/DSPE-mPEG2000 (F3) encapsulating BTZ were prepared and characterized in terms of their size, surface charge, drug loading, and release profile. Mannitol was used as a trapping agent to entrap the BTZ inside the liposomal core. The cytotoxicity and anti-tumor activity of formulations were investigated in vitro and in vivo in mice bearing tumor. Background: Bortezomib (BTZ) is an FDA approved proteasome inhibitor for the treatment of mantle cell lymphoma and multiple myeloma. The low solubility of BTZ has been responsible for the several side effects and low therapeutic efficacy of the drug. Encapsulating BTZ in a nano drug delivery system; helps overcome such issues. Among NDDSs, liposomes are promising diagnostic and therapeutic delivery vehicles in cancer treatment. Objective: Evaluating anti-tumor activity of bortezomib liposomal formulations. Methods: Data prompted us to design and develop three different liposomal formulations of BTZ based on Tm parameter, which determines liposomal stiffness. DPPC (Tm 41°C) and HSPC (Tm 55°C) lipids were chosen as variables associated with liposome rigidity. In vitro cytotoxicity assay was then carried out for the three designed liposomal formulations on C26 and B16F0, which are the colon and melanoma cancer mouse-cell lines, respectively. NIH 3T3 mouse embryonic fibroblast cell line was also used as a normal cell line. The therapeutic efficacy of these formulations was further assessed in mice tumor models. Result: MBTZ were successfully encapsulated into all the three liposomal formulations with a high entrapment efficacy of 60, 64, and 84% for F1, F2, and F3, respectively. The findings showed that liposomes mean particle diameter ranged from 103.4 to 146.8nm. In vitro cytotoxicity studies showed that liposomal-BTZ formulations had higher IC50 value in comparison to free BTZ. F2-liposomes with DPPC, having lower Tm of 41°C, showed much higher anti-tumor efficacy in mice models of C26 and B16F0 tumors compared to F3-HSPC liposomes with a Tm of 55°C. F2 formulation also enhanced mice survival compared with untreated groups, either in BALB/c or in C57BL/6 mice. Conclusion: Our findings indicated that F2-DPPC-liposomal formulations prepared with Tm close to body temperature seem to be effective in reducing the side effects and increasing the therapeutic efficacy of BTZ and merits further investigation.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3179 ◽  
Author(s):  
Peng Zhang ◽  
Xin Li ◽  
Xiao-Long Yuan ◽  
Yong-Mei Du ◽  
Bin-Gui Wang ◽  
...  

An endophytic fungus Arthrinium arundinis TE-3 was isolated and purified from the fresh leaves of cultivated tobacco (Nicotiana tabacum L.). Chemical investigation on this fungal strain afforded three new prenylated diphenyl ethers (1−3) as well as three known analogues (4−6). Structure elucidation of the isolated compounds was carried out by analysis of 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS) spectra, as well as by comparison of those data with literature data. The absolute configuration of the stereogenic center at C-8 in 1 was assigned by comparison of the experimental and calculated ECD spectra. Compounds 1 and 2 showed selective antifungal activity against Mucor hiemalis with minimum inhibitory concentration (MIC) values of 8 and 4 μg/mL, respectively. Compounds 5 and 6 exhibited inhibitory activity against Alteraria alternata with an MIC value of 8 μg/mL. In the cytotoxic assay, 2, 5, and 6 displayed moderate in vitro cytotoxicity against the human monocytic cell line (THP-1 cell line), with IC50 values of 40.2, 28.3, and 25.9 μM, respectively. This study indicated that endophytic fungi possess great potential for exploring new bioactive secondary metabolites.


2019 ◽  
Vol 6 (1) ◽  
pp. 30-32
Author(s):  
Poonkodi K ◽  
Mini R ◽  
Vimaladevi K ◽  
Prabhu V ◽  
Anusuya M ◽  
...  

The present investigation is carried out to study the invitro cytotoxicity of ethanol extract of Syzygium samarangense leaves on HeLa cell line by using MTT assay. Ethanol extract of S. samarangense showed concentration dependent activity on HeLa cell line with IC50 value of 40.5 μg/ml which shows that ethanol extract of S. samarangense posses significant cytoxicity.Moreover the preliminary phytochemical screening showed the presence of fatty acids, alkaloids, flavonoids, terphenoids, saponins, tannins and steroids which are responsible for its cytotoxicity. There are only a few reports are available for cytotoxicity of ethanol extract of S. samarangense.


2020 ◽  
pp. 4-7
Author(s):  
M. R. Kamala Priya ◽  
Priya R. Iyer

Doxorubicin is the most common chemotherapy drug used in cancer therapy. Its usage is associated with various side-effects. In order to overcome the challenges in Doxorubicin administration, the present study has focussed on synthesizing a drug conjugate with biosynthesized gold nanoparticles and doxorubicin. The gold nanoparticles were biosynthesized using green extracts of medicinal plants with potential anticancer activities. The nanoparticle that possesses anticancer activity was conjugated with the drug for a combinatorial effect of the nanoparticles and the drug. The in vitro cytotoxicity was checked in Vero cell line through MTT assay. The in vitro anti proliferative effects were screened against cervical cancer in HeLa cell line. Fluorescence activated cell sorting analysis was carried out to detect the difference between live and dead cell populations. The preliminary confirmation was carried out in UV-VIS spectrophotometer. The morphological characterization was carried out by SEM and stability by Zeta potential. The IC50 of the nanocompounds demonstrated anti-proliferative activity against cervical cancer similar to the chemotherapeutic drug, Doxorubicin; additionally in a much lesser concentration of the drug. The in vitro cytotoxicity exhibited high viability of cells in Vero cell line with minimum viability of 80% in all the tested concentrations. There was a synergistic effect of the nanoparticles along with the drug; thereby an enhanced therapeutic efficiency was achieved. FACS analysis showed 36% of cell death in Dox treated HeLa cells whereas 96% of cell death in Nano-Dox treated HeLa cells. Nano-Dox conjugate has demonstrated high anticancer effects than drug alone Doxorubicin. Further biosynthesized nanomaterials based drug formulation can be developed as a potential strategy in cancer therapy.


2005 ◽  
Vol 21 (5-6) ◽  
pp. 147-154 ◽  
Author(s):  
S Bakand ◽  
A Hayes ◽  
C Winder ◽  
C Khalil ◽  
B Markovic

2019 ◽  
Vol 30 ◽  
pp. 100955 ◽  
Author(s):  
Siti Norfitrah Mohd Salim ◽  
Logaraj Ramakreshnan ◽  
Chng Saun Fong ◽  
Ridhwan Abdul Wahab ◽  
Mohammad Syaiful Bahari Abdull Rasad

Sign in / Sign up

Export Citation Format

Share Document