scholarly journals The Two-Stage Air–CO2 Activation in the Preparation of Activated Carbons. I. Characterization by Gas Adsorption

1984 ◽  
Vol 1 (3) ◽  
pp. 211-222 ◽  
Author(s):  
F. Rodríguez-Reinoso ◽  
A. Linares-Solano ◽  
M. Molina-Sabio ◽  
J. de D. López-González
1984 ◽  
Vol 1 (3) ◽  
pp. 223-234 ◽  
Author(s):  
A. Linares-Solano ◽  
F. Rodríguez-Reinoso ◽  
M. Molina-Sabio ◽  
J. de D. López-González

2021 ◽  
Vol 9 ◽  
Author(s):  
Maria Bernardo ◽  
Nuno Lapa ◽  
Isabel Fonseca ◽  
Isabel A. A. C. Esteves

Porous carbon materials, derived from biomass wastes and/or as by-products, are considered versatile, economical and environmentally sustainable. Recently, their high adsorption capacity has led to an increased interest in several environmental applications related to separation/purification both in liquid- and gas-phases. Specifically, their use in carbon dioxide (CO2) capture/sequestration has been a hot topic in the framework of gas adsorption applications. Cost effective biomass porous carbons with enhanced textural properties and high CO2 uptakes present themselves as attractive alternative adsorbents with potential to be used in CO2 capture/separation, apart from zeolites, commercial activated carbons and metal-organic frameworks (MOFs). The renewable and sustainable character of the precursor of these bioadsorbents must be highlighted in the context of a circular-economy and emergent renewable energy market to reach the EU climate and energy goals. This mini-review summarizes the current understandings and discussions about the development of porous carbons derived from bio-wastes, focusing their application to capture CO2 and upgrade biogas to biomethane by adsorption-based processes. Biogas is composed by 55–65 v/v% of methane (CH4) mainly in 35–45 v/v% of CO2. The biogas upgraded to bio-CH4 (97%v/v) through an adsorption process yields after proper conditioning to high quality biomethane and replaces natural gas of fossil source. The circular-economy impact of bio-CH4 production is further enhanced by the use of biomass-derived porous carbons employed in the production process.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 103 ◽  
Author(s):  
Adeela Rehman ◽  
Mira Park ◽  
Soo-Jin Park

Carbon-based materials is considered one of the oldest and extensively studied research areas related to gas adsorption, energy storage and wastewater treatment for removing organic and inorganic contaminants. Efficient adsorption on activated carbon relies heavily upon the surface chemistry and textural features of the main framework. The activation techniques and the nature of the precursor have strong impacts on surface functionalities. Consequently, the main emphasis for scientists is to innovate or improve the activation methods in an optimal way by selecting suitable precursors for desired adsorption. Various approaches, including acid treatment, base treatment and impregnation methods, have been used to design activated carbons with chemically modified surfaces. The present review article intends to deliver precise knowledge on efforts devoted by researchers to surface modification of activated carbons. Chemical modification approaches used to design modified activated carbons for gas adsorption, energy storage and water treatment are discussed here.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50138-50143 ◽  
Author(s):  
D. Li ◽  
W. B. Li ◽  
J. S. Shi ◽  
F. W. Xin

Heteroatoms doped porous carbons were synthesized with different acids as catalysts and heteroatoms source. Heteroatoms doping enhances gas adsorption capacity.


2017 ◽  
Vol 07 (01) ◽  
Author(s):  
Harold Crespo Sariol ◽  
Thayset Marino Peacok ◽  
Jan Yperman ◽  
Karen Leyssens ◽  
Vera Meynen ◽  
...  

2018 ◽  
Vol 136 ◽  
pp. 753-760 ◽  
Author(s):  
Débora Aline Soares Maia ◽  
José Carlos Alexandre de Oliveira ◽  
Marcelo Sandro Nazzarro ◽  
Karim Manuel Sapag ◽  
Raul Horácio López ◽  
...  

2018 ◽  
Vol 4 (3) ◽  
pp. 41 ◽  
Author(s):  
Davide Bergna ◽  
Toni Varila ◽  
Henrik Romar ◽  
Ulla Lassi

Activated carbons (ACs) can be produced from biomass in a thermal process either in a direct carbonization-activation process or by first carbonizing the biomass and later activating the bio-chars into activated carbons. The properties of the ACs are dependent on the type of process used for production. In this study, the properties of activated carbons produced in one-stage and two-stage processes are considered. Activated carbons were produced by physical activation of two types of starting materials: bio chars produced from spruce and birch chips in a commercial carbonization plant and from the corresponding raw chips. The activated carbons produced were characterized regarding specific surfaces, pore volumes, and pore size distributions. The un-activated bio chars had varying surface areas, 190 and 140 m2 g−1 for birch and spruce, respectively, and pore volumes of 0.092 and 0.067 cm3 g−1, respectively. On the other hand, 530–617 and 647–679 m2 g−1 for activated bio chars from birch and spruce, respectively, and pore volumes 0.366–0.509 and 0.545–0.555 cm3 g−1, respectively, were obtained. According to the results obtained, two slightly different types of activated carbons are produced depending on whether a one-stage or a two-stage carbonization and activation process is used. The ACs produced in the one-stage process had higher specific surface areas (SSA), according to the BET-model (Brunauer–Emmett–Teller), compared to the ones produced in a two-stage process (761–940 m2 g−1 vs. 540–650 m2 g−1, respectively). In addition, total pore volumes were higher in ACs from the one-stage process, but development of micro-pores was greater compared to those of the two-stage process. This indicates that the process can have an influence on the ACs’ porosity. There was no significant difference in total carbon content in general between the one-stage and two-stage processes for spruce and birch samples, but some differences were seen between the starting materials. Especially in the one-stage procedure with 2 and 4 h steam activation, there was nearly a 10% difference in carbon content between the spruce and birch samples.


Author(s):  
Davide Bergna ◽  
Toni Varila ◽  
Henrik Romar ◽  
Ulla Lassi

Activated carbons (ACs) can be produced from biomass in a thermal process either in a direct carbonization-activation process or first by carbonizing the biomass and later on activating the biochars into activated carbons. The properties of the ACs are dependent on the type of process used for production. In this study, the properties of activated carbons produced in a one-stage and a two-stage process are considered. Activated carbons were produced by physical activation of two types of starting materials, biochars produced from spruce and birch chips in a commercial carbonization plant and from the corresponding raw chips. The activated carbons produced were characterized regarding specific surfaces, pore volumes and pore size distributions. The unactivated biochars had some degree of surface area and some porosity. According to the results obtained, two slightly different types of activated carbons are produced depending if a one-stage or a two-stage carbonization and activation process is used. The ACs produced in the one-stage process had higher specific surface areas compared to the ones produced in a two-stage process. In addition, total pore volumes were higher in one-stage process but development of micropores is greater compared to two-stage process. There was no significant difference in total carbon content between one-stage and two-stage process.


2021 ◽  
Vol 2049 (1) ◽  
pp. 012067
Author(s):  
Rakhmawati Farma ◽  
Ramadani Putri Anakis ◽  
Irma Apriyani

Abstract Biomass converted into activated carbon (AC) by using physical activation method can form micro-meso pore structure and maintain the interconnected natural pore network of biomass. AC is prepared from the biomass of Parsea Americana seeds (PAS) through a process of pre-carbonization, chemical activation, carbonization and physical activation which is activated at temperatures of 700°C, 800°C, and 900°C. Characterization of physical properties of AC electrodes consisted of X-ray diffraction, Scanning Electron Microscope-Energy Dispersive X-ray and characterization of electrochemical properties of supercapacitor cells using Cyclic Voltametry. The results showed that the microstructure of the AC electrode has a semicrystalline structure characterized by the presence of two sloping peaks at an angle of 2θ around 24° and 44° which corresponded to the hkl (002) and (100) planes, where the lowest Lc value was produced by the PAS-900 sample. The PAS-900 sample had aggregates or lumps with smaller size in small amounts in the presence of micro-mesopores and had the highest carbon content of 94.50% with the highest capacitance value of 203.12 F/g. The temperature of 900°C is the best activation temperature in the process of manufacture AC electrodes from Parsea Americana seeds biomass for supercapacitor cell applications.


Sign in / Sign up

Export Citation Format

Share Document