scholarly journals Surface and Catalytic Properties of NiO–Fe2O3 Solids Supported on Al2O3

1996 ◽  
Vol 13 (5) ◽  
pp. 409-421 ◽  
Author(s):  
G.A. El-Shobaky ◽  
A.M. Ghozza ◽  
N.M. Deraz

A series of NiO–Fe2O3 catalysts supported on γ-Al2O3 was prepared. The effect of the NiO and Fe2O3 contents and the precalcination temperature on the surface and catalytic properties of the various solids has been investigated. The surface characteristics, viz. SBET, Vp and r, were determined using N2 adsorption conducted at –196°C. The catalytic activities of the various solids were studied using the oxidation of CO by O2 at temperatures in the range between 150°C and 400°C. The prepared solids were preheated in air at various temperatures between 400°C and 1000°C. The results obtained revealed that the SBET values of the different solids decrease progressively on increasing the precalcination temperature above 400°C due to sintering. The specific surface areas were also found to decrease on increasing both the NiO and Fe2O3 contents. The catalytic activities, expressed as reaction rate constant (k) and reaction rate constant per unit area (k), were found to decrease on increasing the precalcination temperature in the range 400–1000°C. Furthermore, the amounts of NiO and Fe2O3 in the different solids modified their catalytic activities in different manners.

1998 ◽  
Vol 16 (1) ◽  
pp. 21-32 ◽  
Author(s):  
G.A. El-Shobaky ◽  
A.M. Ghozza ◽  
N.M. Deraz

Ferric–nickel/aluminium mixed oxide solids have the formula Fe2O3–0.42NiO/Al2O3 were treated with Li2O (0.75–3 mol%) and heated in air for 4 h at 500°C and 800°C, respectively. The effects of this treatment on the surface characteristics of these solids and their catalytic properties in relation to CO oxidation by O2 have been investigated. The results reveal that Li2O doping at 0.75 mol% concentration resulted in an increase of 24% and 18%, respectively, in the value of the specific surface areas, SBET, of the solids precalcined at 500°C and 800°C, while the addition of 3 mol% Li2O led to a slight decrease of ca. 10% in the SBET value of the same solids. In contrast, irrespective of whether the doping process involved solids precalcined at 500°C or 800°C, a significant decrease of 37% and 78%, respectively, was observed in the catalytic activity of these materials. This decrease in catalytic activity was not accompanied by any appreciable change in the magnitude of the activation energy for the catalytic reaction, i.e. Li2O doping brings about a decrease in the concentration of catalytically active sites without changing their energetic nature.


2002 ◽  
Vol 20 (10) ◽  
pp. 1037-1049 ◽  
Author(s):  
G.A. El-Shobaky ◽  
S.A. El-Molla ◽  
S.A. Ismail

The effects of γ-rays (20–160 Mrad) on the surface and catalytic properties of two Co3O4/MgO systems were investigated. The formulae of the investigated solids were 0.05Co3O4/MgO and 0.2Co3O4/MgO, respectively, both prepared by the impregnation method and calcined at 500°C. The irradiated samples were left for one year in sealed tubes before any measurements were undertaken. γ-Irradiation of the investigated solids resulted in a progressive decrease in the particle size of the Co3O4 and MgO phases. This treatment also led to a measurable increase in the specific surface area of the treated solids to an extent proportional to the γ-ray dosage. Treatment of the Co3O4/MgO system with different doses of γ-rays brought about a significant increase in the catalytic activity expressed both as the reaction rate constant and as the reaction rate constant per unit surface area. However, the curve relating to the catalytic activity and dosage of γ-rays showed maxima located at 40 and 80 Mrad for samples having the formula 0.05Co3O4/MgO and 0.2Co3O4/MgO, respectively. Furthermore, samples exposed to 160 Mrad showed a larger catalytic activity than the unirradiated samples. The results demonstrate the role of γ-rays in inhibiting the deterioration of the catalytic activity of the investigated systems as a function of aging time. The irradiation process did not modify the activation energy of the catalyzed reaction but altered the concentration of active centres on the surfaces of the solids without changing their energetic nature.


2000 ◽  
Vol 18 (3) ◽  
pp. 243-260 ◽  
Author(s):  
G.A. El-Shobaky ◽  
M.A. Shouman ◽  
M.N. Alaya

The effects of Li2O treatment on the solid–solid interactions and the surface and catalytic properties of the Co3O4–Fe2O3 system have been studied using TG, DTA and XRD methods, nitrogen adsorption studies at −196°C and the catalytic oxidation of CO by O2 at 150–350°C. The results obtained showed that Li2O doping followed by precalcination at 500–1000°C enhanced the formation of cobalt ferrite to an extent proportional to the amount of dopant added (0.52–6.0 mol% Li2O). The solid–solid interaction leading to the formation of CoFe2O4 took place at temperatures ≥700°C in the presence of the Li2O dopant. Lithia doping modified the surface characteristics of the Co3O4–Fe2O3 solids, both increasing and decreasing their BET surface areas depending on the amount of dopant added and the precalcination temperature employed for the treated solids. The activation energy of sintering (ΔES) of cobalt/ferric mixed oxides was determined for the pure and doped solids from the variation in their specific surface areas as a function of the precalcination temperature. Both an increase and a decrease in the value of ΔES due to Li2O doping occurred depending on the amount of lithia added. The doping of Co3O4–FeO solids, followed by precalcination at 500°C, effected a significant increase (144%) in their catalytic activity towards CO oxidation by O2. Precalcination at 700–1000°C of the mixed oxide solids doped with Li2O (0.52 and 0.75 mol%) resulted in an increase in their catalytic activity which decreased upon increasing the amount of Li2O added above this limit. The activation energy of the catalyzed reaction was determined for the pure and variously doped solids studied.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2007 ◽  
Vol 544-545 ◽  
pp. 95-98 ◽  
Author(s):  
Jong Tae Jung ◽  
Jong Oh Kim ◽  
Won Youl Choi

The purpose of this study is to investigate the effect of the operational parameters of the UV intensity and TiO2 dosage for the removal of humic acid and heavy metals. It also evaluated the applicability of hollow fiber microfiltration for the separation of TiO2 particles in photocatalytic microfiltration systems. TiO2 powder P-25 Degussa and hollow fiber microfiltration with a 0.4 μm nominal pore size were used for experiments. Under the conditions of pH 7 and a TiO2 dosage 0.3 g/L, the reaction rate constant (k) for humic acid and heavy metals increased with an increase of the UV intensity in each process. For the UV/TiO2/MF process, the reaction rate constant (k) for humic acid and Cu, with the exception of Cr in a low range of UV intensity, was higher compared to that of UV/TiO2 due to the adsorption of the membrane surface. The reaction rate constant (k) increased as the TiO2 dosage increased in the range of 0.1~0.3 g/L. However it decreased for a concentration over 0.3 g/L of TiO2. For the UV/TiO2/MF process, TiO2 particles could be effectively separated from treated water via membrane rejection. The average removal efficiency for humic acid and heavy metals during the operational time was over 90 %. Therefore, photocatalysis with a membrane is believed to be a viable process for humic acid and heavy metals removal.


1990 ◽  
Vol 95 (D9) ◽  
pp. 13981 ◽  
Author(s):  
Gaunlin Shen ◽  
Masako Suto ◽  
L. C. Lee

Author(s):  
Shigenori Togashi ◽  
Yukako Asano ◽  
Yoshishige Endo

The chemical reaction yield was predicted by using Monte Carlo simulation. The targeted chemical reaction of a performance evaluation using the microreactor is the consecutive reaction. The main product P1 is formed in the first stage with the reaction rate constant k1. Moreover, the byproduct P2 is formed in the second stage with the reaction rate constant k2. It was found that the yield of main product P1 was improved by using a microreactor when the ratio of the reaction rate constants became k1/k2 >1. To evaluate the Monte Carlo simulation result, the yields of the main products obtained in three consecutive reactions. It was found that the yield of the main product in cased of k1/k2 >1 increased when the microreactor was uesd. Next, a pilot plant involving the numbering-up of 20 microreactors was developed. The 20 microreactor units were stacked in four sets, each containing five microreactor units arranged. The maximum flow rate when 20 microreactors were used was 1 × 104 mm3/s, which corresponds to 72 t/year. Evaluation of the chemical performance of the pilot plant was conducted using a nitration reaction. The pilot plant was found to capable of increasing the production scale without decreasing the yield of the products.


2020 ◽  
Vol 15 (1) ◽  
pp. 280-289
Author(s):  
Ratnawati Ratnawati ◽  
Nita Indriyani

K-carrageenan is a natural polymer with high molecular weight ranging from 100 to 1000 kDa. The oligocarrageenan with low molecular weight is widely used in biomedical application. The aim of this work was to depolymerize k-carrageenan in an acidic solution with the assistance of ultrasound irradiation. The ultrasonication was conducted at various pH (3 and 6), temperatures (30-60 °C), and depolymerization time (0-24 minutes). The results show that the depolymerization reaction follows pseudo-first-order kinetic model with reaction rate constant of 1.856×10-7 to 2.138×10-6 s-1. The reaction rate constant increases at higher temperature and lower pH. The Q10-temperature coefficients of the depolymerization are 1.25 and 1.51 for pH 6 and 3, respectively. The enthalpy of activation (ΔH‡) and the Gibbs energy of activation (ΔG‡) are positive, while the entropy of activation (ΔS‡) is negative, indicating that the activation step of the ultrasound-assisted depolymerization of k-carrageenan is endothermic, non-spontaneous, and the molecules at the transition state is more ordered than at the ground state. The ΔH‡ and the ΔS‡ are not affected by temperature, while the ΔG‡ is a weak function of temperature. The ΔH‡ and ΔS‡ become smaller at higher pH, while the ΔG‡ increases with the increase of pH. The kinetics and thermodynamics analysis show that the ultrasound-assisted depolymerization of k-carrageenan in acidic solution is possibly through three mechanisms, i.e. bond cleavage due to cavitational effect of microbubbles, hydroxyl radical and hydrogen peroxide, as well as proton. Copyright © 2020 BCREC Group. All rights reserved 


Sign in / Sign up

Export Citation Format

Share Document