Performance of Photocatalytic Microfiltration with Hollow Fiber Membrane

2007 ◽  
Vol 544-545 ◽  
pp. 95-98 ◽  
Author(s):  
Jong Tae Jung ◽  
Jong Oh Kim ◽  
Won Youl Choi

The purpose of this study is to investigate the effect of the operational parameters of the UV intensity and TiO2 dosage for the removal of humic acid and heavy metals. It also evaluated the applicability of hollow fiber microfiltration for the separation of TiO2 particles in photocatalytic microfiltration systems. TiO2 powder P-25 Degussa and hollow fiber microfiltration with a 0.4 μm nominal pore size were used for experiments. Under the conditions of pH 7 and a TiO2 dosage 0.3 g/L, the reaction rate constant (k) for humic acid and heavy metals increased with an increase of the UV intensity in each process. For the UV/TiO2/MF process, the reaction rate constant (k) for humic acid and Cu, with the exception of Cr in a low range of UV intensity, was higher compared to that of UV/TiO2 due to the adsorption of the membrane surface. The reaction rate constant (k) increased as the TiO2 dosage increased in the range of 0.1~0.3 g/L. However it decreased for a concentration over 0.3 g/L of TiO2. For the UV/TiO2/MF process, TiO2 particles could be effectively separated from treated water via membrane rejection. The average removal efficiency for humic acid and heavy metals during the operational time was over 90 %. Therefore, photocatalysis with a membrane is believed to be a viable process for humic acid and heavy metals removal.

2008 ◽  
Vol 569 ◽  
pp. 33-36
Author(s):  
Jong Tae Jung ◽  
Jong Oh Kim ◽  
Bum Gun Kwon ◽  
Dong Ha Song

This study was conducted to evaluate the treatment performance of the system using peroxy radical/ozone reaction for refractory organic compounds removal in aqueous solution. The effect of initial humic acid concentration was conducted under the conditions of humic acid concentration 10 mg/L, 30 mg/L, 50 mg/L and 100 mg/L. Reaction rate constant (k) in 30 mg/L of humic acid concentration was higher than that of humic acid concentration 10 mg/L, 50 mg/L amd 100 mg/L. However, it decreased over the range of 30 mg/L of humic acid concentration due to the action of internal filter of humic acid itself. Reaction rate constant (k) in the initial 20 minute of reaction time was accelerated by decreasing hydraulic retention time (HRT). This may be ascribed to increase the reaction time between peroxy radical and ozone. pH is a key for both ozone stability and TiO2 surface property in aqueous solution. Reaction rate constant (k) of acid solution on pH variation was smaller compared to that of neutral or basic circumstances because ozone decomposes easily into hydroxyl radicals in neutral or basic solution. At reaction rate constant (k) for humic acid degradation in each unit process, peroxy radical/ozone combined system was higher than that of ozone only due to the effective production of hydroxyl radical. An obvious difference between ozone and peroxy radical/ozone is the consequence of hydroxyl radical produced by the reaction of ozone molecules and peroxy radicals.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 113
Author(s):  
Nawaf Alshammari ◽  
Meshari Alazmi ◽  
Vajid Nettoor Veettil

Membranes for use in high gas exchange lung applications are riddled with fouling. The goal of this research is to create a membrane that can function in an artificial lung until the actual lung becomes available for the patient. The design of the artificial lung is based on new hollow fiber membranes (HFMs), due to which the current devices have short and limited periods of low fouling. By successfully modifying membranes with attached peptoids, low fouling can be achieved for longer periods of time. Hydrophilic modification of porous polysulfone (PSF) membranes can be achieved gradually by polydopamine (PSU-PDA) and peptoid (PSU-PDA-NMEG5). Polysulfone (PSU-BSA-35Mg), polysulfone polydopamine (PSUPDA-BSA-35Mg) and polysulfone polydopamine peptoid (PSU-PDA-NMEG5-BSA35Mg) were tested by potting into the new design of gas exchange modules. Both surfaces of the modified membranes were found to be highly resistant to protein fouling permanently. The use of different peptoids can facilitate optimization of the low fouling on the membrane surface, thereby allowing membranes to be run for significantly longer time periods than has been currently achieved.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 495 ◽  
Author(s):  
Peng-Cheng Chen ◽  
Zhen Ma ◽  
Xue-Yan Zhu ◽  
Da-Jing Chen ◽  
Xiao-Jun Huang

Enzymatic membrane bioreactors (EMBRs) possess the characteristic of combining catalysis with separation, and therefore have promising application potentials. In order to achieve a high-performance EMBR, membrane property, as well as operating parameters, should give special cause for concerns. In this work, an EMBR based on hollow fiber polysulfone microfiltration membranes with radial gradient pore structure was fabricated and enzyme immobilization was achieved through pressure-driven filtration. Lipase from Candida rugosa was used for immobilization and EMBR performance was studied with the enzymatic hydrolysis of glycerol triacetate as a model reaction. The influences of membrane pore diameter, substrate feed direction as well as operational parameters of operation pressure, substrate concentration, and temperature on the EMBR activity were investigated with the production of hydrolysates kinetically fitted. The complete EMBR system showed the highest activity of 1.07 × 104 U⋅g−1. The results in this work indicate future efforts for improvement in EMBR.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


1990 ◽  
Vol 95 (D9) ◽  
pp. 13981 ◽  
Author(s):  
Gaunlin Shen ◽  
Masako Suto ◽  
L. C. Lee

Author(s):  
Shigenori Togashi ◽  
Yukako Asano ◽  
Yoshishige Endo

The chemical reaction yield was predicted by using Monte Carlo simulation. The targeted chemical reaction of a performance evaluation using the microreactor is the consecutive reaction. The main product P1 is formed in the first stage with the reaction rate constant k1. Moreover, the byproduct P2 is formed in the second stage with the reaction rate constant k2. It was found that the yield of main product P1 was improved by using a microreactor when the ratio of the reaction rate constants became k1/k2 >1. To evaluate the Monte Carlo simulation result, the yields of the main products obtained in three consecutive reactions. It was found that the yield of the main product in cased of k1/k2 >1 increased when the microreactor was uesd. Next, a pilot plant involving the numbering-up of 20 microreactors was developed. The 20 microreactor units were stacked in four sets, each containing five microreactor units arranged. The maximum flow rate when 20 microreactors were used was 1 × 104 mm3/s, which corresponds to 72 t/year. Evaluation of the chemical performance of the pilot plant was conducted using a nitration reaction. The pilot plant was found to capable of increasing the production scale without decreasing the yield of the products.


2020 ◽  
Vol 15 (1) ◽  
pp. 280-289
Author(s):  
Ratnawati Ratnawati ◽  
Nita Indriyani

K-carrageenan is a natural polymer with high molecular weight ranging from 100 to 1000 kDa. The oligocarrageenan with low molecular weight is widely used in biomedical application. The aim of this work was to depolymerize k-carrageenan in an acidic solution with the assistance of ultrasound irradiation. The ultrasonication was conducted at various pH (3 and 6), temperatures (30-60 °C), and depolymerization time (0-24 minutes). The results show that the depolymerization reaction follows pseudo-first-order kinetic model with reaction rate constant of 1.856×10-7 to 2.138×10-6 s-1. The reaction rate constant increases at higher temperature and lower pH. The Q10-temperature coefficients of the depolymerization are 1.25 and 1.51 for pH 6 and 3, respectively. The enthalpy of activation (ΔH‡) and the Gibbs energy of activation (ΔG‡) are positive, while the entropy of activation (ΔS‡) is negative, indicating that the activation step of the ultrasound-assisted depolymerization of k-carrageenan is endothermic, non-spontaneous, and the molecules at the transition state is more ordered than at the ground state. The ΔH‡ and the ΔS‡ are not affected by temperature, while the ΔG‡ is a weak function of temperature. The ΔH‡ and ΔS‡ become smaller at higher pH, while the ΔG‡ increases with the increase of pH. The kinetics and thermodynamics analysis show that the ultrasound-assisted depolymerization of k-carrageenan in acidic solution is possibly through three mechanisms, i.e. bond cleavage due to cavitational effect of microbubbles, hydroxyl radical and hydrogen peroxide, as well as proton. Copyright © 2020 BCREC Group. All rights reserved 


Sign in / Sign up

Export Citation Format

Share Document