scholarly journals Ultrastructure of internal jugular vein defective valves

2014 ◽  
Vol 30 (9) ◽  
pp. 644-647 ◽  
Author(s):  
P Zamboni ◽  
V Tisato ◽  
E Menegatti ◽  
F Mascoli ◽  
S Gianesini ◽  
...  

Objectives To study the ultrastructure of intraluminal defects found in the internal jugular vein by using a scanning electron microscopy. Methods Using a scanning electron microscopy, intraluminal septa and/or defective valves blocking the flow in the distal internal jugular vein of seven patients were studied together with the adjacent wall and compared with control specimen. Results The internal jugular veins’ wall showed a significant derangement of the endothelial layer as compared to controls. Surprisingly, no endothelial cells were found in the defective cusps, and the surface of the structure is covered by a fibro-reticular lamina. Conclusions Although the lack of endothelial cells in the internal jugular vein intraluminal obstacles is a further abnormality found in course of chronic cerebrospinal venous insufficiency, our investigation cannot clarify whether this finding is primary or caused by progressive loss of endothelium in relation to altered haemodynamic forces and/or to a past post-thrombotic/inflammatory remodelling.

1994 ◽  
Vol 72 (01) ◽  
pp. 140-145 ◽  
Author(s):  
Valeri Kolpakov ◽  
Maria Cristina D'Adamo ◽  
Lorena Salvatore ◽  
Concetta Amore ◽  
Alexander Mironov ◽  
...  

SummaryActivated neutrophils may promote thrombus formation by releasing proteases which may activate platelets, impair the fibrinolytic balance and injure the endothelial monolayer.We have investigated the morphological correlates of damage induced by activated neutrophils on the vascular wall, in particular the vascular injury induced by released cathepsin G in both static and dynamic conditions.Human umbilical vein endothelial cells were studied both in a cell culture system and in a model of perfused umbilical veins. At scanning electron microscopy, progressive alterations of the cell monolayer resulted in cell contraction, disruption of the intercellular contacts, formation of gaps and cell detachment.Contraction was associated with shape change of the endothelial cells, that appeared star-like, while the underlying extracellular matrix, a potentially thrombogenic surface, was exposed. Comparable cellular response was observed in an “in vivo” model of perfused rat arterial segment. Interestingly, cathepsin G was active at lower concentrations in perfused vessels than in culture systems. Restoration of blood flow in the arterial segment previously damaged by cathepsin G caused adhesion and spreading of platelets on the surface of the exposed extracellular matrix. The subsequent deposition of a fibrin network among adherent platelets, could be at least partially ascribed to the inhibition by cathepsin G of the vascular fibrinolytic potential.This study supports the suggestion that the release of cathepsin G by activated neutrophils, f.i. during inflammation, may contribute to thrombus formation by inducing extensive vascular damage.


1996 ◽  
Vol 181 (1) ◽  
pp. 10-17 ◽  
Author(s):  
F. BRAET ◽  
W. H. J. KALLE ◽  
R. B. DE ZANGER ◽  
B. G. DE GROOTH ◽  
A. K. RAAP ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 770
Author(s):  
Mario Allegra ◽  
Ignazio Restivo ◽  
Alberto Fucarino ◽  
Alessandro Pitruzzella ◽  
Sonya Vasto ◽  
...  

Background: Eryptosis is a physiological, apoptosis-like death of injured erythrocytes crucial to prevent premature haemolysis and the pathological sequalae generated by cell-free haemoglobin. When dysregulated, the process is associated to several inflammatory-based pathologies. 4-Hydroxy-trans-2-nonenal (HNE) is an endogenous signalling molecule at physiological levels and, at higher concentrations, is involved in the pathogenesis of several inflammatory-based diseases. This work evaluated whether HNE could induce eryptosis in human erythrocytes. Methods: Measurements of phosphatidylserine, cell volume, intracellular oxidants, Ca++, glutathione, ICAM-1, and ceramide were assessed by flow cytometry. Scanning electron microscopy evaluated morphological alterations of erythrocytes. Western blotting assessed caspases. PGE2 was measured by ELISA. Adhesion of erythrocytes on endothelial cells was evaluated by gravity adherence assay. Results: HNE in the concentration range between 10–100 µM induces eryptosis, morphological alterations correlated to caspase-3 activation, and increased Ca++ levels. The process is not mediated by redox-dependent mechanisms; rather, it strongly depends on PGE2 and ceramide. Interestingly, HNE induces significant increase of erythrocytes adhesion to endothelial cells (ECs) that are in turn dysfunctionated as evident by overexpression of ICAM-1. Conclusions: Our results unveil a new physiopathological role for HNE, provide mechanistic details of the HNE-induced eryptosis, and suggest a novel mechanism through which HNE could exert pro-inflammatory effects.


Sign in / Sign up

Export Citation Format

Share Document